1887

Abstract

SUMMARY: A strain of (var. 2), grown in submerged culture at 44°C, decayed crystalline cellulose by the secretion of cellulolytic enzymes into the culture medium. Dialysed culture filtrates, after growth on cellobiose, were also effective in degrading crystalline cellulose (Avicel). Cellulase, measured viscometrically with carboxymethylcellulose as substrate and therefore referred to as CM-cellulase, was induced by cellulose, glucomannan, cellobiose and, to a limited extent, by laminaribiose and cellobionic acid. Low CM-cellulase activities were also detectable when the organism was grown on other carbon sources. In culture media supplemented with readily metabolized non-inducing substrates, such as glucose, CM-cellulase activity did not increase after their exhaustion indicating that no derepression of constitutive CM-cellulase occurred. CM-cellulase synthesis induced during growth on cellobiose was strongly inhibited, although not completely suppressed, by glucose and other carbon sources. In cultures grown on glucose and cellobiose, glucose was utilized first and CM-cellulase synthesis was repressed; cellobiose utilization occurred only after glucose exhaustion and triggered CM-cellulase formation. When glucose was added to a culture growing on cellobiose, further utilization of the latter was prevented and CM-cellulase synthesis was inhibited. The use of glucose analogues gave some indications that cellobiose did not compete with glucose for the same transport carrier and that glucose catabolism was a prerequisite for the inhibition of CM-cellulase synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-110-2-291
1979-02-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/110/2/mic-110-2-291.html?itemId=/content/journal/micro/10.1099/00221287-110-2-291&mimeType=html&fmt=ahah

References

  1. Barnes T. G. 1974 Ecological aspects of the degradation of town waste Thesis University of Aston; Birmingham:
    [Google Scholar]
  2. Bernt E., Bergmeyer U. 1970; Harnstoff.. In Methoden der enzymatischen Analyse, 2nd edn, pp. 1738–1741 Edited by Bergmeyer H. U. Wein-heim, F. R. G.: Chemie Verlag;
    [Google Scholar]
  3. Buchala A. J., Franz G., Meier H. 1974; A glucomannan from the tubers of Orchis morio. Phytochemistry 13:163–166
    [Google Scholar]
  4. Cirillo P. C. 1961; Sugar transport in microorganisms. Annual Review of Microbiology 15:197–218
    [Google Scholar]
  5. Cooper R. M., Wood R. K. S. 1973; Induction of synthesis of extracellular cell wall degrading enzymes in vascular wilt fungi. Nature, London 246:309–311
    [Google Scholar]
  6. Coutts A. D., Smith R. E. 1976; Factors influencing production of cellulases by Sporotrichum thermophile. Applied and Environmental Microbiology 31:819–825
    [Google Scholar]
  7. Dawes E. A., McGill D. J., Midgley M. 1971; Analysis of fermentation products. Methods in Microbiology 6A:53–215
    [Google Scholar]
  8. Eggins H. O. W., Pugh G. J. F. 1962; Isolation of cellulose decomposing fungi from the soil. Nature, London 193:94–95
    [Google Scholar]
  9. Epps H. M. R., Gale E. F. 1942; The influence of the presence of glucose during growth on the enzymic activities of Escherichia coli: comparison of the effect with that produced by fermentation acids. Biochemical Journal 36:619–923
    [Google Scholar]
  10. Herbert D., Phipps P. J., Strange R. E. 1971; Chemical analysis of microbial cells. Methods in Microbiology 5B:209–344
    [Google Scholar]
  11. Hulcher F. H., King K. W. 1958; Disaccharide preference of an aerobic cellulolytic bacterium, Cellvibrio gilvus n.sp. Journal of Bacteriology 76:565–570
    [Google Scholar]
  12. Hulme M. A., Stranks D. W. 1970; Induction and the regulation of production of cellulase by fungi. Nature, London 226:469–470
    [Google Scholar]
  13. Hulme M. A., Stranks D. W. 1971; Regulation of cellulase production by Myrothecium verrucaria grown on non-cellulosic substrates. Journal of General Microbiology 69:145–155
    [Google Scholar]
  14. Husemann E., Werner R. 1963; Zellulose-Synthese durch Acetobacter xylinum. I. Ueber Molekulargewicht und Molekulargewichtsver-teilung von Bakterienzellulose in Abhängigkeit von der Synthesedauer. Makromolekulare Chemie 59:43–60
    [Google Scholar]
  15. Klingmüller W. 1967; Aktive Aufnahme von Zuckern durch Zellen von Neurospora crassa unter Beteiligung eines enzymatischen Systems mit Permease-Eigenschaften. II. Zeitschrift für Naturwissenschaften 22b:188–195
    [Google Scholar]
  16. von Klopotek A. 1974; Revision der thermo-philen Sporotrichum Arten: Chrysosporium ther-mophilum (Apinis) comb. nov. und Chrysosporium fergusii spec. nov. = status conidialis von Coryn-ascus thermophilus (Fergus und Sinden) comb.nov. Archives of Microbiology 98:365–369
    [Google Scholar]
  17. Lewis B. A., Smith F., Stephen A. M. 1963; Metal hydride reductions. Methods in Carbohydrate Chemistry 2:70–71
    [Google Scholar]
  18. Loewenberg J. R., Chapman C. M. 1977; Sophorose metabolism and cellulase induction in Trichoderma. Archives of Microbiology 111:61–64
    [Google Scholar]
  19. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  20. Magasanik B. 1961; Catabolite repression. Cold Spring Harbor Symposia on Quantitative Biology 26:249–256
    [Google Scholar]
  21. Mandels M., Reese E. T. 1960; Induction of cellulase in fungi by cellobiose. Journal of Bacteriology 79:816–826
    [Google Scholar]
  22. Mandels M., Weber J. 1969; The production of cellulases.. In Cellulases and their Applications, Advances in Chemistry Series 95, pp. 391–413 Edited by Gould F. Washington: American Chemical Society;
    [Google Scholar]
  23. Mandels M., Parrish F. W., Reese E. T. 1962; Sophorose as an inducer of cellulase in Trichoderma viride. Journal of Bacteriology 83:400–408
    [Google Scholar]
  24. Nelson N. 1944; A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153:375–380
    [Google Scholar]
  25. Neville M. N., Suskind S. R., Roseman S. 1971; A derepressible active transport system for glucose in Neurospora crassa. Journal of Biological Chemistry 246:1294–1301
    [Google Scholar]
  26. Nisizawa T., Suzuki H., Nakayama M., Nisizawa K. 1971a; Inductive formation of cellulase by sophorose in Trichoderma viride. Journal of Biochemistry 70:375–385
    [Google Scholar]
  27. Nisizawa T., Suzuki H., Nisizawa K. 1971b; De novo’ synthesis of cellulase induced by sophorose in Trichoderma viride cells. Journal of Biochemistry 70:387–393
    [Google Scholar]
  28. Nisizawa T., Suzuki H., Nisizawa K. 1972; Catabolite repression of cellulase formation in Trichoderma viride. Journal of Biochemistry 71:999–1007
    [Google Scholar]
  29. Pfennig N., Lippert K. D. 1966; Ueber das Vitamin Bl2-Bedürfnis phototropher Schwefel-bakterien. Archiv für Mikrobiologie 55:245–256
    [Google Scholar]
  30. Reese E. T. 1977; Degradation of polymeric carbohydrates by microbial enzymes. In Recent Advances in Phytochemistry 11:311–365
    [Google Scholar]
  31. Reese E. T., Siu R. G. H., Levinson H. S. 1950; The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. Journal of Bacteriology 59:485–497
    [Google Scholar]
  32. Romanelli R. A., Houston C. W., Barnett S. M. 1975; Studies on thermophilic cellulolytic fungi. Applied Microbiology 30:276–281
    [Google Scholar]
  33. Romano A. H. 1973; Properties of sugar transport systems in Aspergillus nidulans and their regulation. In Genetics of Industrial Microorganisms, vol. II: Actinomycetes and Fungi, pp. 195–212 Edited by Vanek Z., Hostalek Z., Cudlin J. Amsterdam: Elsevier;
    [Google Scholar]
  34. Santos T., Villanueva J. R., Nombela C. 1977; Production and catabolite repression of Penicillium italicum glucanases. Journal of Bacteriology 129:52–58
    [Google Scholar]
  35. Scarborough G. A. 1970; Sugar transport in Neurospora crassa. Journal of Biological Chemistry 245:1694–1698
    [Google Scholar]
  36. Sieber R. 1972; Die Hemicellulosen von Cordyline indivisa (Steud.). Phytochemistry 11:1435–1441
    [Google Scholar]
  37. Somogyi M. 1952; Notes on sugar determination. Journal of Biological Chemistry 195:19–23
    [Google Scholar]
  38. Stewart B. J., Leatherwcod J. M. 1976; Derepressed synthesis of cellulase by Cellulo-monas. Journal of Bacteriology 128:609–615
    [Google Scholar]
  39. Suzuki H. 1975; Cellulase formation in Pseudomonas fluorescens var.cellulosa . In Symposium on Enzymatic Hydrolysis of Cellulose, pp. 155–169 Edited by Bailey M., Enari T.-M., Linko M. Helsinki: SITRA;
    [Google Scholar]
  40. Swisher E. J., Storwick J. B., King K. W. 1964; Metabolic non-equivalence of the two glucose moities of cellobiose in Cellvibrio gilvus. Journal of Bacteriology 88:817–820
    [Google Scholar]
  41. Tansey M. R. 1971; Agar diffusion assay of cellulolytic ability of thermophilic fungi. Archiv für Mikrobiologie 77:1–11
    [Google Scholar]
  42. Trevelyan W. E., Procter D. P., Harrison J. S. 1950; Detection of sugars on paper chromatograms. Nature, London 166:444–445
    [Google Scholar]
  43. Westermark U., Eriksson K.-E. 1974; Cello-biose :quinone oxidoreductase, a new wood-degrading enzyme from white-rot fungi. Acta chemica scandinavica B28:209–214
    [Google Scholar]
  44. Whitaker D. R. 1971; Cellulases. In The Enzymes, 3rd edn, vol. V , pp. 273–290 Edited by Boyer P. D. New York and London: Academic Press;
    [Google Scholar]
  45. Yamane K., Suzuki H., Hirotani M., Ozawa H., Nisizawa K. 1970; Effect of nature and supply of carbon sources on cellulase formation in Pseudomonas fluorescens var. cellulosa. Journal of Biochemistry 67:9–18
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-110-2-291
Loading
/content/journal/micro/10.1099/00221287-110-2-291
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error