1887

Abstract

Four Gram-positive bacteria have been isolated from separate soil samples by enrichment culture with acetone as sole source of carbon. Whole cells of all strains grown on acetone rapidly oxidized acetone, acetol and methylglyoxal, and three of the four also oxidized isopropanol. The patterns of induced enzymes in cell extracts are compatible with the oxidation sequence: isopropanol → acetone → acetol → methylglyoxal → pyruvate. Although an enzyme system capable of converting acetone into acetol has not been detected, the inclusion of acetol in the pathway is supported by the results of studies with whole cells and [C]acetone. The proposed pathway of acetone metabolism is contrasted with evidence for an alternative, but not fully understood, pathway used by JOB5.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-118-1-159
1980-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/118/1/mic-118-1-159.html?itemId=/content/journal/micro/10.1099/00221287-118-1-159&mimeType=html&fmt=ahah

References

  1. Baudisch O. 1918; Über eine neue Reaktion auf Acetol. Biochemische Zeitschrift 89:279–282
    [Google Scholar]
  2. Britton L. N., Markovetz A. J. 1977; A novel ketone mono-oxygenase from Pseudomonas cepacia. Purification and properties. Journal of Biological Chemistry 252:8561–8566
    [Google Scholar]
  3. Cain R. B. 1961; The metabolism of protocatechuic acid by a Vibrio. Biochemical Journal 79:298–312
    [Google Scholar]
  4. Coz R., Lamprecht W. 1974; Pyruvate, phosphoenolpyruvate and d-glycerate-2-phosphate. In Methods of Enzymatic Analysis 3, 2nd edn. pp. 1446–1448 Bergmeyer H. U. Edited by New York & London: Academic Press;
    [Google Scholar]
  5. Cripps R. E. 1975; The microbial metabolism of acetophenone. Metabolism of acetophenone and some chloroacetophenones by an Arthrobacter species. Biochemical Journal 152:233–241
    [Google Scholar]
  6. Dagley S., Fewster M. E., Happold F. C. 1952; The bacterial oxidation of phenylacetic acid. Journal of Bacteriology 63:327–336
    [Google Scholar]
  7. Együd L. G., Szent-Györgyi A. 1966; Cell division, SH, ketoaldehydes and cancer. Proceedings of the National Academy of Sciences of the United States of America 55:388–393
    [Google Scholar]
  8. Flavell R. B., Woodward D. D. 1971; Metabolic role, regulation of synthesis, cellular location and genetic control of the glyoxalate cycle enzymes in Neurospora crassa. Journal of Bacteriology 105:200–210
    [Google Scholar]
  9. Friedemann T. E., Haugen G. E. 1943; Pyruvic acid. II. The determination of keto acids in blood and urine. Journal of Biological Chemistry 147:415–442
    [Google Scholar]
  10. Gawehn K., Bergmeyer H. U. 1974; Methylglyoxal. In Methods of Enzymatic Analysis 3, 2nd edn. pp. 1496–1498 Bergmeyer H. U. Edited by New York & London: Academic Press;
    [Google Scholar]
  11. Goepfert G. J. 1941; Studies on the mechanism of dehydrogenation by Fusarium lini Bolley. XIX. Dehydrogenation of higher primary and secondary alcohols. Journal of Biological Chemistry 140:525–534
    [Google Scholar]
  12. Gornall A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry 177:751–766
    [Google Scholar]
  13. Griffiths M. W. 1979; The control of the synthesis of isocitrate lyase in a thermophilic Bacillus. Journal of General Microbiology 112:357–364
    [Google Scholar]
  14. Herman N. J., Bell E. J. 1970; Metabolic control in Acinetobacter sp. I. Effect of C1 versus C2 and C3 substrates on isocitrate lyase synthesis. Canadian Journal of Microbiology 16:769–774
    [Google Scholar]
  15. Higgins I. J., Turner J. M. 1969; Enzymes of methylglyoxal metabolism in a pseudomonad which rapidly metabolises aminoacetone. Biochimica et biophysica acta 184:464–467
    [Google Scholar]
  16. Kornberg H. L. 1966; The role and control of the glyoxylate cycle in Escherichia coli. Biochemical Journal 99:1–11
    [Google Scholar]
  17. Levine S., Krampitz L. O. 1952; The oxidation of acetone by a soil diphtheroid. Journal of Bacteriology 64:645–650
    [Google Scholar]
  18. Lukins H. B., Foster J. W. 1963; Methyl ketone metabolism in hydrocarbon-utilising mycobacteria. Journal of Bacteriology 85:1074–1087
    [Google Scholar]
  19. Monder C. 1967; α-Keto aldehyde dehydrogenase, an enzyme that catalyses the oxidation of methyl-glyoxal to pyruvate. Journal of Biological Chemistry 242:4603–4609
    [Google Scholar]
  20. Racker E. 1951; The mechanism of action of glyoxalase. Journal of Biological Chemistry 190:685–696
    [Google Scholar]
  21. Rahim M. A., Sih C. J. 1966; Mechanisms of steroid oxidation by microorganisms. XI. Enzymatic cleavage of the pregnane side chain. Journal of Biological Chemistry 241:3615–3623
    [Google Scholar]
  22. Reeves H. C., Rabin R., Wegener W. S., Ajl S. J. 1971; Assay of enzymes of the tricarboxylic acid and glyoxylate cycles. Methods in Microbiology 6A:452–455
    [Google Scholar]
  23. Rosenberger R. F., Elsden S. R. 1960; The yields of Streptococcus faecalis grown in continuous culture. Journal of General Microbiology 22:726–739
    [Google Scholar]
  24. Rudney H. 1954; Propanediol phosphate as a possible intermediate in the metabolism of acetone. Journal of Biological Chemistry 210:361–371
    [Google Scholar]
  25. Sakami W. 1950; Formation of formate and labile methyl groups from acetone in the intact rat. Journal of Biological Chemistry 187:369–370
    [Google Scholar]
  26. Sakami W., Lafaye J. M. 1951; The metabolism of acetone in the intact rat. Journal of Biological Chemistry 193:199–203
    [Google Scholar]
  27. Sariaslani F. S., Westwood A. W., Higgins I. J. 1975; Control of isocitrate lyase in Nocardia salmonicolor (NCIB9701). Journal of General Microbiology 91:315–324
    [Google Scholar]
  28. Supniewski J. 1923; Transformation of carbon compounds by Bacillus pyocaneus. Compte rendu des séances de la Société de biologie 89:1377–1379
    [Google Scholar]
  29. Trudgill P. W. 1978; Microbial degradation of alicyclic hydrocarbons. In Developments in Biodegradation of Hydrocarbons pp. 47–84 Watkinson R. J. Edited by London: Applied Science Publishers;
    [Google Scholar]
  30. Vestal J. R., Perry J. J. 1969; Divergent metabolic pathways for propane and propionate utilisation by a soil isolate. Journal of Bacteriology 99:216–221
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-118-1-159
Loading
/content/journal/micro/10.1099/00221287-118-1-159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error