1887

Abstract

Glutamine synthetase (EC 6·3·1·2) was purified about 430-fold from the nitrifying bacterium by affinity chromatography on Blue Sepharose CL-6B and gel filtration on Sepharose 4B. The enzyme (apparent mol. wt 700000), which consisted of 12 subunits, each of mol. wt 58000, required a divalent cation for both biosynthetic and transferase activities. Regulation of glutamine synthetase both by a feedback inhibition involving amino acids and by an adenylylation/deadenylylation mechanism was studied. The enzyme was highly adenylylated (75-90%) in cell free extracts from cells grown on nitrite as the sole source of nitrogen. The adenylylated form of the enzyme could be deadenylylated by treatment with snake venom phos-phodiesterase. An isoactivity pH of 7·4 was recorded for glutamine synthetase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-4-959
1984-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/4/mic-130-4-959_.html?itemId=/content/journal/micro/10.1099/00221287-130-4-959&mimeType=html&fmt=ahah

References

  1. Aleem M. I. H. 1970; Oxidation of inorganic nitrogen compounds. Annual Review of Plant Physiology 21:67–90
    [Google Scholar]
  2. Aleem M. I. H. 1977; Coupling of energy with electron transfer reactions in chemolithotrophic bacteria. Symposia of the Society for General Microbiology 27:351–381
    [Google Scholar]
  3. Alef K., Zumft W. G. 1981; Regulatory properties of glutamine synthetase from the nitrogenfixing phototrophic bacterium Rhodopseudomonas palustris. Naturforschung 36c:784–789
    [Google Scholar]
  4. Alef K., Burkhardt H. J., Horstmann H. J., Zumft W. G. 1981; Molecular characterization of glutamine synthetase from the nitrogen-fixing phototrophic bacterium Rhodopseudomonas palustris. Naturforschung 38c:246–254
    [Google Scholar]
  5. Andrews P. 1970; Estimation of molecular size and molecular weights of biological compounds by gel filtration. Methods in Biochemical Analysis 18:153
    [Google Scholar]
  6. Ballantine R. 1957; Determination of total nitrogen and ammonia. Methods in Enzymology 3:984–995
    [Google Scholar]
  7. Bender R. A., Janseen K. A., Resnik A. D., Blumenberg M., Foor F., Magasanik B. 1977; Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. Journal of Bacteriology 129:1001–1009
    [Google Scholar]
  8. Bhandari B., Nicholas D. J. D. 1979; Ammonia and O2 uptake in relation to proton translocation in cells of Nitrosomonas europaea. Archives of Microbiology 122:249–255
    [Google Scholar]
  9. Bhandari B., Nicholas D. J. D. 1981; Some properties of glutamine synthetase from the nitrifying bacterium Nitrosomonas europaea. Australian Journal of Biological Sciences 34:527–539
    [Google Scholar]
  10. Bradford M. M. 1976; A rapid and sensitive method of the quantitation of microgram quantities of proteins utilizing the principle of protein dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  11. Cleland W. A. 1967; The statistical analysis of enzyme kinetic data. Advances in Enzymology 29:1–32
    [Google Scholar]
  12. Darrow R. A., Knotts R. R. 1977; Two forms of glutamine synthetase in free-living root nodule bacteria. Biochemical and Biophysical Research Communications 78:554–559
    [Google Scholar]
  13. Davies W., Ormerod J. G. 1982; Glutamine synthetase in Chlorobium limicola and Rhodospirillum rubrum. FEMS Microbiology Letters 13:75–78
    [Google Scholar]
  14. Gass J. D., Meister A. 1970; Computer analysis of active site of glutamine synthetase. Biochemistry 9:1380–1389
    [Google Scholar]
  15. Ginsburg A. 1969; Conformational changes in glutamine synthetase from Escherichia coli. II. Some characteristics of the equilibrium binding of feedback inhibitors to the enzyme. Biochemistry 8:1726–1740
    [Google Scholar]
  16. Ginsburg A., Stadtman E. R. 1973; Regulation of glutamine synthetase in Escherichia coli. In The Enzymes of Glutamine Metabolism pp. 9–43 Prusiner S., Stadtman E. R. Edited by New York: Academic Press;
    [Google Scholar]
  17. Hooper A. B., Hansen J., Bell R. 1967; Characterization of glutamate dehydrogenase from the ammonia oxidising chemoautotroph Nitrosomonas europaea. Journal of Biological Chemistry 242:288–296
    [Google Scholar]
  18. Hubbard J. S., Stadtman E. R. 1967; Regulation of glutamine synthetase. II. Patterns of feed back inhibition in microorganisms. Journal of Bacteriology 93:1045–1055
    [Google Scholar]
  19. Johansson B. C., Gest H. 1977; Adenylylation/ deadenylylation control of the glutamine synthetase of Rhodopseudomonas capsulata. European Journal of Biochemistry 81:365–371
    [Google Scholar]
  20. Kelly D. P. 1971; Autotrophy; concepts of litho- trophic bacteria and their organic metabolism. Annual Review of Microbiology 25:177–210
    [Google Scholar]
  21. Khanna S., Nicholas D. J. D. 1983; Some properties of glutamine synthetase and glutamate synthase from Chlorobium vibrioforme f. thiosulfatophilum. Archives of Microbiology 134:98–103
    [Google Scholar]
  22. Kingdon H. S., Stadtman E. R. 1967; Regulation of glutamine synthetase. X. Effect of growth conditions on the suceptibility of Escherichia coli glutamine synthetase to feed back inhibition. Journal of Bacteriology 94:949–957
    [Google Scholar]
  23. Kumar S., Nicholas D. J. D. 1981; Oxygen-dependent nitrite uptake and nitrate production by cells, spheroplasts and membrane vesicles of Nitrobacter agilis. FEMS Microbiology Letters 11:201–206
    [Google Scholar]
  24. Kumar S., Nicholas D. J. D. 1982; Assimilation of inorganic nitrogen compounds by Nitrobacter agilis. Journal of General Microbiology 128:1795–1801
    [Google Scholar]
  25. Kumar S., Nicholas D. J. D. 1983; Proton electrochemical gradients in washed cells of Nitrosomonas europaea and Nitrobacter agilis. Journal of Bacteriology 154:56–71
    [Google Scholar]
  26. Kumar S., Nicholas D. J. D. 1984; NAD+- and NADP +-dependent glutamate dehydrogenases in Nitrobacter agilis. Journal of General Microbiology 130:967–973
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 221680–685
    [Google Scholar]
  28. Magasanik B., Prival M. J., Brenchley J. E., Tyler B. M., Deleo A. B., Stereicher S. L., Bender R. A., Paris C. G. 1974; Glutamine synthetase as a regulator of enzyme synthesis. In Current Topics in Cellular Regulation 8 pp. 119–138 Horecker B. L., Stadtman E. R. Edited by New York: Academic Press;
    [Google Scholar]
  29. Meister A. 1974; Glutamine synthetase of mammals. In The Enzymes 10 pp. 699–754 Boyer P. D. Edited by New York: Academic Press;
    [Google Scholar]
  30. Michalski W. P., Nicholas D. J. D., Vignais P. M. 1983; 14C-labelling of glutamine synthetase and Fe protein of nitrogenase in toluene-treated cells of Rhodopseudomonas capsulata. Biochimica et bio-physica acta 743:136–148
    [Google Scholar]
  31. Murrell J. C., Dalton H. 1983; Purification and properties of glutamine synthetase from Methylococcus capsulatus (Bath). Journal of General Microbiology 129:1187–1196
    [Google Scholar]
  32. Nicholas D. J. D. 1963; The metabolism of inorganic nitrogen and its compounds in microorganisms. Biological Reviews 38:530–568
    [Google Scholar]
  33. Nicholas D. J. D. 1978; Intermediary metabolism of nitrifying bacteria, with particular reference to nitrogen, carbon and sulfur compounds. In Microbiology 1978 pp. 305–309 Schlessinger D. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  34. Siedel J., Shelton E. 1979; Purification and properties of Azotobacter vinelandii glutamine synthetase. Archives of Biochemistry and Biophysics 192:214–224
    [Google Scholar]
  35. Shapiro B. M., Stadtman E. R. 1970; Glutamine synthetase (Escherichia coli). Methods in Enzymologv 17A:910–922
    [Google Scholar]
  36. Stadtman E. R., Ginsburg A., Ciardi J. E., Yeh J., Hennig S. B., Shapiro B. M. 1970; Multiple molecular forms of glutamine synthetase produced by enzyme-catalysed adenylylation and deadenylylation reactions. Advances in Enzyme Regulation 8:99–118
    [Google Scholar]
  37. Stadtman E. R., Shapiro B. M., Kingdon H. S., Woolfolk C. A., Hubbard J. S. 1968; Cellular regulation of glutamine synthetase activity in Escherichia coli. Advances in Enzyme Regulation 6:257–289
    [Google Scholar]
  38. Suzuki I. 1974; Mechanisms of inorganic oxidation and energy coupling. Annual Review of Microbiology 28:85–102
    [Google Scholar]
  39. Tyler B. 1978; Regulation of the assimilation of nitrogen compounds. Annual Review of Biochemistry 47:1127–1152
    [Google Scholar]
  40. Wallace W., Nicholas D. J. D. 1969; The biochemistry of nitrifying micro-organisms. Biological Reviews 44:359–391
    [Google Scholar]
  41. Wallace W., Knowles S. E., Nicholas D. J. D. 1969; Intermediary metabolism of carbon compounds by nitrifying bacteria. Archiv für Mikrobiologie 70:26–42
    [Google Scholar]
  42. Weber K., Osborn M. 1975; Proteins and sodium dodecylsulfate: molecular weight determination on polyacrylamide gels and related procedures. In The Proteins, 3rd edn. 3 pp. 179–233 Neurath H., Hill R. L., Boeder C. Edited by New York: Academic Press;
    [Google Scholar]
  43. Wohlheuter R. M., Schutt M., Holzer H. 1973; Regulation of glutamine synthetase in vivo in E. coli. In The Enzymes of Glutamine Metabolism pp. 45–64 Prusiner S., Stadtman E. R. Edited by New York: Academic Press;
    [Google Scholar]
  44. Woolfolk C. A., Shapiro B. M., Stadtman E. R. 1966; Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli. Archives of Biochemistry and Biophysics 116:177–192
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-4-959
Loading
/content/journal/micro/10.1099/00221287-130-4-959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error