1887

Abstract

A bacterial isolate (O-1) which degrades different substituted benzenesulphonates was identified as a strain of sp. using chemotaxonomic, DNA:DNA hybridization and serolgical methods. Its ability to mineralize orthanilic acid (2-aminobenzenesulphonate) is correlated with the presence of a 117 MDa plasmid, designated pSAH. Selective curing of pSAH resulted in the abolition of the orthanilic acid minieralization phenotype, which could be fully restored by re-establishment of pSAH. A second plasmid of 6·8 MDa, designated pME1702, with no detectable functions, is also present in sp. O-1. Upon conjugation with sp. O-1 as donor, the plasmid-free recipient PaW130 acquird the ability to utilize orthanilic sp. O-1. Growth characteristics, the inducibility of enzyme activity (desulphonation), and expression of characteristic proteins during mineralization of orthanilic acid indicate that a plasmid-encoded cluster of genes is involed in the biodegradation of orthanilic acid. Southern blot hybridizations did not reeal any relationship between pSAH and the archetypal TOL plasmid pWW0, which also mediates degradation of substituted aromatic compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-11-2241
1990-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/11/mic-136-11-2241.html?itemId=/content/journal/micro/10.1099/00221287-136-11-2241&mimeType=html&fmt=ahah

References

  1. Auling G., Reh M., Lee C. M., Schlegel H. G. 1978; Pseudomonas pseudoflam, a new species of hydrogen oxidizing bacteria: its differentiation from Pseudomonas flava and other yellow-pigmented, Gram-negative, hydrogen-oxidizing species. International Journal of Systematic Bacteriology 28:82–95
    [Google Scholar]
  2. Auling G., Probst A., Kroppenstedt R. M. 1986; Chemo- and molecular taxonomy of D(–)-tartrate-utilizing pseudomonads. Systematic and Applied Microbiology 8:114–120
    [Google Scholar]
  3. Baxter-Gabbard K. L. 1972; A simple method for the large-scale preparation of sucrose gradients. FEBS Letters 20:117–119
    [Google Scholar]
  4. Bretscher H. 1981; Waste disposal in the chemical industry. In Microbial Degradation of Xenobiotics and Recalcitrant Compounds pp. 65–74 Leisinger T., Cook A. M., Hütter R., Nüesch R. Edited by London: Academic Press;
    [Google Scholar]
  5. Brilon C., Beckmann W., Knackmuss H. -J. 1981; Catabolism of naphthalenesulphonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Applied and Environmental Microbiology 42:44–55
    [Google Scholar]
  6. Burlage R. S., Hooper S. W., Sayler G. S. 1989; The TOL (pWWO) catabolic plasmid. Applied and Environmental Microbiology 55:1323–1328
    [Google Scholar]
  7. Busse J., Auling G. 1988; Polyamine pattern as a chemotaxono- mic marker within the Proteobacteria . Systematic and Applied Microbiology 11:1–8
    [Google Scholar]
  8. Busse H. -J., Auling G. 1991; The genus Alcaligenes(and ‘Achromobacter’). In The Prokaryotes. A Handbook on the Biology of Bacteria. Ecophysiology, Isolation, Identification, Application, 2nd. Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. Edited by New York: Springer-Verlag; in the Press
    [Google Scholar]
  9. Busse H. -J., El-Banna T., Auling G. 1989; Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Applied and Environmental Microbiology 55:1578–1583
    [Google Scholar]
  10. Chakrabarty A. M. 1972; Genetic basis of the biodegradation of salicylate in Pseudomonas . Journal of Bacteriology 112:815–823
    [Google Scholar]
  11. Chase W. 1967 Methods in Immunology and Immunchemistry pp. 197–224 New York London: Academic Press;
    [Google Scholar]
  12. Chatfield L. K., Williams P. A. 1986; Naturally occurring TOL plasmids in Pseudomonas strains carry either two homologous or two nonhomologous catechol 2,3-oxygenase genes. Journal of Bacteriology 168:878–885
    [Google Scholar]
  13. Cook A. M., Thurnheer T., Kohler-Staub D., Gälli R. 1986; Mikrobieller Abbau von Xenobiotika. Swiss Biotech 4:23–25
    [Google Scholar]
  14. Dagley S. 1986; Biochemistry of aromatic hydrocarbon degradation in pseudomonads. In The Bacteria: a Treatise on Structure and Function 10 pp. 527–555 Sokatch J. R., Ornston L. N. Edited by London: Academic Press;
    [Google Scholar]
  15. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA-hybridization from renaturation rates. European Journal of Biochemistry 12:133–142
    [Google Scholar]
  16. De Ley J., Segers P., Kersters K., Mannheim W., Lievens A. 1986; Intra- and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae . International Journal of Systematic Bacteriology 36:405–414
    [Google Scholar]
  17. Dunn N. W., Gunsalus I. C. 1973; Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida . Journal of Bacteriology 114:974–979
    [Google Scholar]
  18. Eaton R. W., Timmis K. N. 1986; Spontaneous deletion of a 20-kilobase DNA segment carrying genes specifying isopropylbenzene metabolism in Pseudomonas putida RE204. Journal of Bacteriology 168:428–430
    [Google Scholar]
  19. Eckhardt T. 1978; A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588
    [Google Scholar]
  20. Farrell R., Chakrabarty A. M. 1979; Degradative plasmids: molecular nature and mode of evolution. In Plasmids of Medical, Environmental and Commercial Importance pp. 97–109 Timmis K. N., Pühler A. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  21. Ferrer C., Cózar E., Garcia-Valdés E., Rotger R. 1986; IncP-7 naphthalene-degradative plasmids from Pseudomonas putida . FEMS Microbiology Letters 36:21–25
    [Google Scholar]
  22. Frantz B., Chakrabarty A. M. 1986; Degradative plasmids in pseudomonas. In The Bacteria: a Treatise on Structure and Function 10 pp. 295–323 Sokatch J. R., Ornston L. N. Edited by London: Academic Press;
    [Google Scholar]
  23. Inouye S., Nakazawa A., Nakazawa T. 1983; Molecular cloning of regulatory gene xylR and operator-promoter regions of the xylABC and xylDEFG operons of the TOL plasmid. Journal of Bacteriology 155:1192–1199
    [Google Scholar]
  24. Jeenes D. J., Williams P. A. 1982; Excision and integration of degradative pathway genes from TOL plasmid pWW0. Journal of Bacteriology 150:188–194
    [Google Scholar]
  25. Johnson J. L. 1984; Bacterial Classification. III. Nucleic acids in bacterial classification. In Bergey’s Manual of Systematic Bacteriology 1 pp. 8–11 Krieg N. R., Holt J. G. Edited by Baltimore: Williams Wilkins;
    [Google Scholar]
  26. Kado C. I., Liu S. T. 1981; Rapid procedure for detection and isolation of large and small plasmids. Journal of Bacteriology 145:1365–1373
    [Google Scholar]
  27. Keil H. 1990; Molecular cloning and expression of a novel catechol 2,3-dioxygenase gene from the benzoate meta-cleavage pathway in Azotobacter vinelandii . Journal of General Microbiology 136:607–613
    [Google Scholar]
  28. Keil H., Keil S., Pickup R. W., Williams P. A. 1985; Evolutionary conservation of genes coding for meta pathway enzymes within TOL plasmids pWWO and pWW53. Journal of Bacteriology 164:887–895
    [Google Scholar]
  29. Kersters K., De Ley J. 1984; Genus AlcaligenesCastellani and Chalmers 1919. In Bergey’s Manual of Systematic Bacteriology 1: pp. 361–373 Krieg N. R., Holt J. G. Edited by Baltimore: Williams Wilkins;
    [Google Scholar]
  30. Kiredjian M., Holmes B., Kersters K., Guilvout I., De Ley J. 1986; Alcaligenes piechaudii, a new species from human clinical specimens and the environment. International Journal of Systematic Bacteriology 36:282–287
    [Google Scholar]
  31. Lehrbach P. R., Mcgregor I., Ward J. M., Broda P. 1983; Molecular relationships between Pseudomonas Inc P-9 degradative plasmids TOL, NAH, and SAL. Plasmid 10:164–174
    [Google Scholar]
  32. Leisinger T. 1983; Microorganisms and xenobiotic compounds. Experientia 39:1183–1191
    [Google Scholar]
  33. Locher H. H., Thurnheer T., Leisinger T., Cook A. M. 1989; 3-Nitrobenzenesulfonate, 3-aminobenzenesulfonate, and 4-aminobenzenesulfonate as sole carbon sources for bacteria. Applied and Environmental Microbiology 55:492–494
    [Google Scholar]
  34. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning, a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Meinkoth J., Wahl G. 1985; Hybridization of nucleic acids immobilized on solid supports. Analytical Biochemistry 138:267–284
    [Google Scholar]
  36. Meulien P., Broda P. 1982; Identification of chromosomally integrated TOL DNA in cured derivatives of Pseudomonas putida PAW1. Journal of Bacteriology 152:911–914
    [Google Scholar]
  37. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria . International Journal of Systematic Bacteriology 40:213–215
    [Google Scholar]
  38. Nies D., Mergeay M., Friedrich B., Schlegel H. G. 1987; Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. Journal of Bacteriology 169:4865–4868
    [Google Scholar]
  39. Ohet T., Watanabe Y. 1988; Microbial degradation of 1,6-naphthalenedisulfonic acid and 2,6-naphthalenedisulfonic acid by Pseudomonassp. DS-1. Agricultural and Biological Chemistry 52:2409–2414
    [Google Scholar]
  40. Ouchterlony Ö. 1949; Antigen-antibody reaction in gels. Acta Pathologica et Microbiologica Scandinavica 26:507–515
    [Google Scholar]
  41. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and quinone system with special reference to the existence of 3-hydroxy fatty acids. Journal of General and Applied Microbiology 29:17–40
    [Google Scholar]
  42. Richards G. M. 1974; Modification of the diphenylamine reaction giving increased sensitivity and simplicity in the estimation of DNA. Analytical Biochemistry 57:369–376
    [Google Scholar]
  43. Rochelle P. A., Fry J. C., Day M. J., Bale M.J. 1985; An accurate method for estimating sizes of small and large plasmids and DNA fragments by gel electrophoresis. Journal of General Microbiology 132:53–59
    [Google Scholar]
  44. Saint C. P., Mcclure N. C., Venables W. A. 1990; Physical map of the aromatic amine and m-toluate catabolic plasmid pTDN1 in Pseudomonas putida: location of a unique meta-cleavage pathway. Journal of General Microbiology 136:615–625
    [Google Scholar]
  45. Sinclair M. I., Maxwell P. C., Lyon B. R., Holloway B. W. 1986; Chromosomal location of TOL plasmid DNA in Pseudomonas putida . Journal of Bacteriology 168:1302–1308
    [Google Scholar]
  46. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  47. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria, classis nov., a name for the phylogenetic taxon including the ‘purple bacteria and their relatives’. International Journal of Systematic Bacteriology 38:321–325
    [Google Scholar]
  48. Tamaoka J., Ha D. -M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni comb, nov., with an emended description of the genus Comamonas . International Journal of Systematic Bacteriology 37:5259
    [Google Scholar]
  49. Thurnheer T., Köhler T., Cook A. M., Leisinger T. 1986; Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. Journal of General Microbiology 132:1215–1220
    [Google Scholar]
  50. Thurnheer T., Cook A. M., Leisinger T. 1988; Co-culture of defined bacteria to degrade seven sulfonated aromatic compounds: efficiency, rates and phenotypic variations. Applied Microbiology and Biotechnology 29:605–609
    [Google Scholar]
  51. Thurnheer T., Zürrer D., Höglinger O., Leisinger T., Cook A. M. 1990; Initial steps in the degradation of benzene sulfonic acid, 4-toluene sulfonic acid, and orthanilic acid in Alcaligenes sp. O–1. Biodegradation in the Press
    [Google Scholar]
  52. Trevors J. T. 1986; Plasmid curing in bacteria. FEMS Microbiology Reviews 32:149–157
    [Google Scholar]
  53. Wheatcroft R., Williams P. A. 1981; Rapid method for the study of both stable and unstable plasmids in Pseudomonas . Journal of General Microbiology 124:433–437
    [Google Scholar]
  54. Williams P. A., Murray K. 1974; Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. Journal of Bacteriology 120:416–423
    [Google Scholar]
  55. Wittich R. M., Rast H. G., Knackmuss H. J. 1988; Degradation of naphthalene-2,6- and naphthalene-1,6-disulfonic acid by Moraxella sp. Applied and Environmental Microbiology 54:1842–1847
    [Google Scholar]
  56. Zürrer D., Cook A. M., Leisinger T. 1987; Microbial desulfonation of substituted naphthalenesulfonic acids and benzene- sulfonic acids. Applied and Environmental Microbiology 53:1459–1463
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-11-2241
Loading
/content/journal/micro/10.1099/00221287-136-11-2241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error