1887

Abstract

pyruvate kinase gene () was transformed into yeast using the multicopy vector pJDB207. Growth rates and gene expression levels varied considerably amongst the transformants. Yeast transformants expressing the gene at high levels formed small colonies compared with those expressing the gene at relatively low levels. Slow-growing transformants reverted at high frequency to more rapid growth, and this correlated with decreases in gene copy number and mRNA abundance. This apparent selection against over-expression was disrupted by the introduction of a stop codon at the 5′-end of the coding region, thus confirming that the growth effects were mediated by the gene. However, massive overproduction of pyruvate kinase in yeast, using multiple copies of a : gene fusion, had no significant effect upon cell growth. This suggests that the deleterious effect upon the host yeast cell is mediated by abnormally high levels of the wild-type gene or mRNA, rather than by increased pyruvate kinase levels.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-12-2359
1990-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/12/mic-136-12-2359.html?itemId=/content/journal/micro/10.1099/00221287-136-12-2359&mimeType=html&fmt=ahah

References

  1. Aguilera A., Zimmerman F. K. 1986; Isolation and molecular analysis of the phosphoglucose isomerase structural gene of Saccharomyces cerevisiae . Molecular and General Genetics 202:83–89
    [Google Scholar]
  2. Alber T., Kawasaki G. 1982; Nucleotide sequence of the triose phosphate isomerase gene of Saccharomyces cerevisiae . Journal of Molecular and Applied Genetics 1:419–434
    [Google Scholar]
  3. Beggs J. D. 1978; Transformation of yeast by a replicating hybrid plasmid. Nature; London: 275104–109
    [Google Scholar]
  4. Bennetzen J. L., Hall B. D. 1982; The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. Journal of Biological Chemistry 257:3018–3025
    [Google Scholar]
  5. Bettany A. J. E. 1988 Messenger RNA translation in Saccharomyces cerevisiae PhD Thesis University of Glasgow:
    [Google Scholar]
  6. Bettany A. J. E., Moore P. A., Cafferkey R., Bell L. D., Goodey A. R., Carter B. L. A., Brown A. J. P. 1989; 5′-secondary structure, in contrast to a short string of non-preferred codons, inhibits the translation of the pyruvate kinase mRNA in yeast. Yeast 5:187–198
    [Google Scholar]
  7. Burke R. L., Tekamp-Olson P., Najarian R. 1983; The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae . Journal of Biological Chemistry 258:2193–2201
    [Google Scholar]
  8. Chen C. Y., Oppermann H., Hitzeman R. A. 1984; Homologous versus heterologous gene expression in the yeast, Saccharomyces cerevisiae . Nucleic Acids Research 12:8951–8970
    [Google Scholar]
  9. Clifton D., Fraenkel D. G. 1981; The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae . Journal of Biological Chemistry 256:13074–13078
    [Google Scholar]
  10. Coleman K., Steensma H. Y., Kaback D. B., Pringle J. R. 1986; Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation and characterization of the CDC24 gene and adjacent regions of the chromosome. Molecular and Cellular Biology 6:4516–4525
    [Google Scholar]
  11. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  12. Fraenkel D. G. 1982; Carbohydrate metabolism. In The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression pp. 1–37 Strathem J. N., Jones E. W., Broach J. R. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Futcher A. B., Cox B. S. 1984; Copy number and the stability of 2-micron circle-based artificial plasmids of Saccharomyces cerevisiae . Journal of Bacteriology 157:283–290
    [Google Scholar]
  14. Gallwitz D., Sures I. 1980; Structure of a split yeast gene: complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae . Proceedings of the National Academy of Sciences of the United States of America 77:2546–2550
    [Google Scholar]
  15. Goodey A. R., Doel S., Piggott J. R., Watson M. E. E., Carter B. L. A. 1987; Expression and secretion of foreign polypeptides in yeast. In Yeast Biotechnology pp. 401–429 Berry D. R., Russell I., Stewart G. G. Edited by London: Allen & Unwin;
    [Google Scholar]
  16. Heinisch J., Ritzel R. G., Von Borstel R. C., Aguilera A., Rodicio R., Zimmermann F. K. 1989; The phosphofructokinase genes of yeast evolved from two duplication events. Gene 78:309–321
    [Google Scholar]
  17. Hitzeman R. A., Hagie F. E., Hayflick J. S., Chen C. Y., Seeburg P. H., Derynck R. 1982; The primary sequence of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nucleic Acids Research 10:7791–7808
    [Google Scholar]
  18. Holland J. P., Holland M. J. 1979; The primary structure of a glyceraldehyde-3-phosphate dehydrogenase gene from Saccharomyces cerevisiae . Journal of Biological Chemistry 254:9839–9845
    [Google Scholar]
  19. Holland M. J., Holland J. P., Thill G. P., Jackson K. A. 1981; The primary structures of two yeast enolase genes: homology between the 5′-noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes. Journal of Biological Chemistry 256:1385–1395
    [Google Scholar]
  20. Hunsley J. R., Suelter C. H. 1969; Yeast pyruvate kinase: II kinetic properties. Journal of Biological Chemistry 244:4819–4822
    [Google Scholar]
  21. Kawasaki G., Fraenkel D. G. 1982; Cloning of yeast glycolytic genes by complementation. Biochemical and Biophysical Research Communications 108:1107–1112
    [Google Scholar]
  22. Kellermann E., Seeboth P. G, Hollenberg C. P. 1986; Analysis of the primary structure and promoter function of a pyruvate decarboxylase gene (PDC1) from Saccharomyces cerevisiae . Nucleic Acids Research 14:8963–8977
    [Google Scholar]
  23. King D. J., Walton E. F., Yarranton G. T. 1989; The production of proteins and peptides from Saccharomyces cerevisiae . In Molecular and Cell Biology of Yeasts pp. 107–133 Walton E. F., Yarranton G. T. Edited by London: Blackie;
    [Google Scholar]
  24. Kingsman S. M., Kingsman A. J., Dobson M. J., Mellor J., Roberts N. A. 1985; Heterologous gene expression in Saccharomyces cerevisiae . Biotechnology and Genetic Engineering Reviews 3:377–416
    [Google Scholar]
  25. Kopetzki E., Entian K.-D., Mecke D. 1985; Complete nucleotide sequence of the hexokinase P1 gene (HXK1) of Saccharomyces cerevisiae . Gene 39:95–102
    [Google Scholar]
  26. Lehrach R. H., Diamond D., Wozney J. M., Boedtker H. 1977; RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751
    [Google Scholar]
  27. Lindquist S. 1981; Regulation of protein synthesis during heat shock. Nature; London: 293311–314
    [Google Scholar]
  28. Maitra P. K., Lobo Z. 1971; A kinetic study of glycolytic enzyme synthesis in yeast. Journal of Biological Chemistry 246:475–488
    [Google Scholar]
  29. Maniatis T., Jeffrey A., Kleid D. G. 1975; Nucleotide sequence of the rightward operator of phage lambda. Proceedings of the National Academy of Sciences of the United States of America 72:1184–1188
    [Google Scholar]
  30. Mcnally T., Purvis I. J., Fothergill-Gilmore L. A., Brown A. J. P. 1989; The yeast pyruvate kinase gene does not contain a string of non-preferred codons: revised nucleotide sequence. FEBS tetters 247:312–316
    [Google Scholar]
  31. Mellor J., Dobson M. J., Roberts N. A., Kingsman A. J., Kingsman S. M. 1985; Factors affecting heterologous gene expression in Saccharomyces cerevisiae . Gene 33:215–226
    [Google Scholar]
  32. Moore P. A., Bettany A. J. E., Brown A. J. P. 1990; The expression of a yeast glycolytic gene is subject to dosage limitation. Gene 89:85–92
    [Google Scholar]
  33. Murray J. A. H., Scarpa M., Rossi N., Cesarini G. 1987; Antagonistic controls regulate copy number of the yeast 2-micron plasmid. EMBO Journal 6:4204–4212
    [Google Scholar]
  34. Parent S. A., Fenimore C. M., Bostian K. A. 1985; Vector systems for the expression, analysis and cloning of DNA sequences in Saccharomyces cerevisiae . Yeast 1:83–138
    [Google Scholar]
  35. Purvis I. J., Loughlin L., Bettany A. J. E., Brown A. J. P. 1987; Translation and stability of an Escherichia coli β-galactosidase mRNA expressed under the control of pyruvate kinase sequences in Saccharomyces cerevisiae . Nucleic Acids Research 15:7963–7974
    [Google Scholar]
  36. Santiago T. C., Purvis I. J., Bettany A. J. E., Brown A. J. P. 1986; The relationship between mRNA stability and length in Saccharomyces cerevisiae . Nucleic Acids Research 14:8347–8360
    [Google Scholar]
  37. Santiago T. C., Bettany A. J. E., Purvis I. J., Brown A. J. P. 1987; Messenger RNA stability in Saccharomyces cerevisiae: the influence of translation and poly(A) tail length. Nucleic Acids Research 15:2417–2429
    [Google Scholar]
  38. Schaaf I., Heinisch J., Zimmermann F. K. 1989; Overproduction of glycolytic enzymes in yeast. Yeast 5:285–290
    [Google Scholar]
  39. Schwelberger H. G., Kohlwein S. D., Paltauf F. 1989; Molecular cloning, primary structure and disruption of the structural gene of aldolase from Saccharomyces cerevisiae . European Journal of Biochemistry 180:301–308
    [Google Scholar]
  40. Stachelek C., Stachelek J., Swan J., Botstein D., Konigsberg W. 1986; Identification, cloning and sequence determination of the genes specifying hexokinase A and B from yeast. Nucleic Acids Research 14:945–963
    [Google Scholar]
  41. Tekamp-Olson P., Najarian R., Burke R. L. 1988; The isolation, characterisation and nucleotide sequence of the phosphoglucoisomerase gene of Saccharomyces cerevisiae . Gene 73:153–161
    [Google Scholar]
  42. Thomas P. S. 1980; Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of the National Academy of Sciences of the United States of America 77:5201–5205
    [Google Scholar]
  43. Watson H. C., Walker N. P. C., Shaw P. J., Bryant T. N., Wendell P. L., Fothergill L. A., Perkins R. E., Conroy S. C., Dobson M. J., Tuite M. F., Kingsman A. J., Kingsman S. M. 1982; Sequence and structure of yeast phosphoglycerate kinase. EMBO Journal 1:1635–1640
    [Google Scholar]
  44. White M. F., Fothergill-Gilmore L. A. 1988; Sequence of the gene encoding phosphoglycerate mutase from Saccharomyces cerevisiae . FEBS Letters 229:383–387
    [Google Scholar]
  45. Yoshino M., Murakami K. 1982; AMP deaminase reaction as a control system of glycolysis in yeast: activation of phosphofructokinase and pyruvate kinase by the AMP deaminase-ammonia system. Journal of Biological Chemistry 257:2822–2828
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-12-2359
Loading
/content/journal/micro/10.1099/00221287-136-12-2359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error