1887

Abstract

Stepwise discriminant analysis was used to identify the most powerful selective substrates which could be used to formulate media capable of enriching for antibiotic-producing soil isolates. This was achieved by characterizing collection of 74 soil bacteria, including eubacteria and actinomycetes, according to their ability to produc antibacterial antibiotics and their growth responses to 43 physiological and nutritional tests. The characters which were selective for actinomycetes relative to eubacteria included growth on proline (1%, w/v) and humic acid (0·1%) as sole sources of both carbon and nitrogen, growth on nitrate as a nitrogen source, and growth at pH 7·7–8·0. Growth on proline (1 %) and humic acid (0·1%) as sole carbon/nitrogen sources, growth on asparagine as: nitrogen source, and growth in the presence of vitamins were among the characteristics which allowed antibiotic producing actinomycetes to be differentiated from non-antibiotic-producing strains. Several simple isolation media which incorporated the selective substrates identified by discriminant analysis succeeded in increasing the proportion of actinomycetes isolated from soil samples. Furthermore, the percentage of isolates capable of antibiotic production was considerably increased.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-10-2321
1991-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/10/mic-137-10-2321.html?itemId=/content/journal/micro/10.1099/00221287-137-10-2321&mimeType=html&fmt=ahah

References

  1. Aharonowitz Y., Demain A. L. 1979; Nitrogen nutrition and regulation of cephalosporin production in Streptomyces clavuligerus . Canadian Journal of Microbiology 25:61–67
    [Google Scholar]
  2. Berdy J. 1989; The discovery of new bioactive microbial metabolites : screening and identification. Bioactive Microbial Metabolites (Progress in Industrial Microbiology 273–25 Bushell M. E., Graefe U. Amsterdam: Elsevier;
    [Google Scholar]
  3. Bull A. T., Huck T. A., Bushell M. E. 1990; Optimization strategies in microbial process development and operation. Microbial Growth Dynamics145–168 Poole R. K., Bazin M. J., Keevil K. W. Oxford: Oxford University Press;
    [Google Scholar]
  4. Bushell M. E. 1982; Microbiological aspects of the discovery of novel secondary metabolites. Topics in Enzyme and Fermentation Technology 632–67 Wiseman A. Chichester: Ellis Horwood;
    [Google Scholar]
  5. Bushell M. E. 1983; Search and discovery of novel microbial metabolites. Progress in Industrial Microbiology 171–6 Bushell M. E. Amsterdam: Elsevier;
    [Google Scholar]
  6. Bushell M. E., Nisbet L. J. 1981; A technique for eliminating recurring producers of known metabolites in antibiotic screens. Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene. 1. Abteilung, Supplement 11:507–514
    [Google Scholar]
  7. Chang L. T., Elander R. P. 1979; Rational selection for improved cephalosporin C productivity in strains of Acremonium chrysogenum Gams. Developments in Industrial Microbiology 20:367–379
    [Google Scholar]
  8. Fazerkerly G. V., Jackson G. E. 1975; Metal ion coordination by some penicillin and cephalosporin antibiotics. Journal of Inorganic and Nuclear Chemistry 37:2371–2375
    [Google Scholar]
  9. Gordon R. E., Mihm J. M. 1962; The identification of Nocardia caviae (Erikson) nov. comb. Annals of the New York Academy of Sciences 98:628–636
    [Google Scholar]
  10. Hayakawa M., Nonomura H. 1987; Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. Journal of Fermentation Technology 65:501–509
    [Google Scholar]
  11. Hayakawa M., Ishizawa K., Nonomura H. 1988; Distribution of rare actinomycetes in Japanese soils. Journal of Fermentation Technology 66:367–373
    [Google Scholar]
  12. Ho W. C., Ko W. H. 1980; A simple medium for the selective isolation and enumeration of soil actinomycetes. Annals of the Phytopathology Society of Japan 46:634–638
    [Google Scholar]
  13. Kuster E., Williams S. T. 1964; Selection of media for isolation of streptomycetes. Nature London: 202928
    [Google Scholar]
  14. Lechevalier M. P., Lechevalier H. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. International Journal of Systematic Bacteriology 20:435–443
    [Google Scholar]
  15. Nolan R. D., Cross T. 1988; Isolation and screening of actinomycetes. Actinomycetes in Biotechnology1–32 Goodfellow M., Williams S. T., Mordarski M. London: Academic Press;
    [Google Scholar]
  16. Norusis M. J. 1985 SPSSX Advanced Statistics Guide New York: McGraw-Hill;
    [Google Scholar]
  17. Okami Y., Hotta K. 1988; Search and discovery of new antibiotics. Actinomycetes in Biotechnology33–67 Goodfellow M., Williams S. T., Mordarski M. London: Academic Press;
    [Google Scholar]
  18. Onadipe A. O., Bushell M. E. 1987; The use of multivariate analysis for the design of selective isolation conditions for mutants of Streptomyces cattleya with improved antibiotic titre. Journal of Chemical Technology and Biotechnology 39:237–249
    [Google Scholar]
  19. Porter J. N., Wilhelm J. J., Tresner H. D. 1960; Method for the preferential isolation of actinomycetes from soils. Applied Microbiology 8:174–178
    [Google Scholar]
  20. Pridham T. G., Lyons A. J. 1961; Streptomyces albus (Rossi-Doria) Waksman et Henrici: taxonomic study of strains labelled Streptomyces albus . Journal of Bacteriology 81:431–441
    [Google Scholar]
  21. Pridham T. G., Anderson P., Foley C., Lindenfelser L. A., Hesseltine C. W., Benedict R. G. 1957; A selection of media for maintenance and taxonomic study of Streptomyces . Antibiotics Annual 1956/7947–953
    [Google Scholar]
  22. Rowbotham T. J., Cross T. 1977; Ecology of Rhodococcus coprophilus and associated actinomycetes in freshwater and agricultural habitats. Journal of General Microbiology 100:231–240
    [Google Scholar]
  23. Shen Y. Q., Heim J., Solomon N. A., Wolfe S., Demain A. L. 1984; Repression of β-lactam production in Cephalosporium acremonium by nitrogen sources. Journal of Antibiotics 37:503–511
    [Google Scholar]
  24. Shirling E. B., Gottleib D. 1966; Methods of characterization of Streptomyces species. International Journal of Systematic Bacteriology 16:313–340
    [Google Scholar]
  25. Vickers J. C., Williams S. T., Ross G. W. 1984; A taxonomic approach to the selective isolation of streptomycetes from soil. Biological, Biochemical and Biomedical Aspects of Actinomycetes553–561 Ortiz-Ortiz L., Bojalil L. F., Yakoleff V. Orlando: Academic Press;
    [Google Scholar]
  26. Williams S. T., Davies F. L., Hall D. M. 1969; A practical approach to the taxonomy of actinomycetes isolated from soil. The Soil Ecosystem107–117 Shields J. G. London: Academic Press;
    [Google Scholar]
  27. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983a; Numerical classification of Streptomyces and related genera. Journal of General Microbiology 129:1743–1813
    [Google Scholar]
  28. Williams S. T., Goodfellow M., Wellington E. M. H., Vickers J. C., Alderson G., Sneath P. H. A., Sackin M. J., Mortimer A. M. 1983b; A probability matrix for the identification of some streptomycetes. Journal of General Microbiology 129:1815–1830
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-10-2321
Loading
/content/journal/micro/10.1099/00221287-137-10-2321
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error