1887

Abstract

Summary: Twenty-nine strains of 14 species of rumen bacteria were screened for their ability to hydrolyse Ala. Ala, Gly Arg-4-methoxy-2-naphthylamide (GlyArg-MNA) and Leu-MNA. Several species, notably , were active against Ala, and a smaller number, including , broke down Ala. had an exceptionally high leucine arylamidase activity. However, only hydrolysed GlyArg-MNA. Further investigation revealed that only and hydrolysed Ala to Ala and Ala, with little Ala being produced, in a manner similar to rumen fluid. The activity of against synthetic peptidase substrates, including GlyArg-MNA, LysAla-MNA, ArgArg-MNA, GlyPro-MNA, LeuVal-MNA, and Ala--nitroanilide, was similar to that of rumen fluid, whereas the activity of was quite different. Since the main mechanism by which peptides are broken down in the rumen is similar to dipeptidyl aminopeptidase type I, for which GlyArg-MNA is a diagnostic substrate, it was concluded that was the most important single species in peptide breakdown in the rumen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-9-2259
1991-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/9/mic-137-9-2259.html?itemId=/content/journal/micro/10.1099/00221287-137-9-2259&mimeType=html&fmt=ahah

References

  1. Bladen H. A., Bryant M. P., Doetsch R. N. 1961; A study of bacterial species from the rumen which produce ammonia from protein hydrolyzate. Applied Microbiology 9:175–180
    [Google Scholar]
  2. Cotta M. A., Russell J. B. 1982; Effect of peptides and amino acids on efficiency of rumen bacterial protein synthesis in continuous culture. Journal of Dairy Science 65:226–234
    [Google Scholar]
  3. Flint H. J., Bisset J. 1990; Genetic diversity in Selenomonas ruminantium isolated from the rumen. FEMS Microbiology Ecology 73:351–360
    [Google Scholar]
  4. Flint H. J., Stewart C. S. 1987; Antibiotic resistance patterns and plasmids of ruminai strains of Bacteroides ruminicola and Bacteroides multiacidus . Applied Microbiology and Biotechnology 26:450–455
    [Google Scholar]
  5. Flint H. J., Thomson A. M., Bisset J. 1988; Plasmid-associated transfer of tetracycline resistance in Bacteroides ruminicola . Applied and Environmental Microbiology 54:855–860
    [Google Scholar]
  6. Gibson S. A. W., MacFarlane G. T. 1988; Studies on the proteolytic activity of Bacteroides fragilis . Journal of General Microbiology 134:19–27
    [Google Scholar]
  7. Herbert D., Phipps P. J., Strange R. E. 1971; Chemical analysis of microbial cells. Methods in Microbiology 5B:209–344
    [Google Scholar]
  8. Hobson P. N. 1969; Rumen bacteria. Methods in Microbiology 3B:133–149
    [Google Scholar]
  9. Leng R. A., Nolan J. V. 1984; Nitrogen metabolism in the rumen. Journal of Dairy Science 70:1072–1089
    [Google Scholar]
  10. McDonald J. K., Barrett A. J. 1986 Mammalian Proteases: a Glossary and Bibliography, vol. 2. Exopeptidases New York: Academic Press;
    [Google Scholar]
  11. McDonald J. K., Schwabe C. 1977; Intracellular exopeptidases. Proteinoses in Mammalian Cells and Tissues311–391 Barrett A. J. Amsterdam: Elsevier/North Holland Biomedical Press;
    [Google Scholar]
  12. Newbold C. J., McKain N., Wallace R. J. 1989; The role of protozoa in ruminai peptide metabolism. Biochemistry and Molecular Biology of “Anaerobic” Protozoa42–55 Lloyd D., Coombs G. H., Paget T. A. London: Harwood Academic Publishers;
    [Google Scholar]
  13. Pittman K. A., Bryant M. P. 1964; Peptides and other nitrogen sources for growth of Bacteroides ruminicola . Journal of Bacteriology 88:401–410
    [Google Scholar]
  14. Pittman K. A., Lakshmanan S., Bryant M. P. 1967; Oligopeptide uptake by Bacteroides ruminicola . Journal of Bacteriology 93:1499–1508
    [Google Scholar]
  15. Russell J. B. 1983; Fermentation of peptides by Bacteroides ruminicola Bi4. Applied and Environmental Microbiology 45:1566–1574
    [Google Scholar]
  16. Russell J. B., Robinson P. H. 1984; Compositions and characteristics of strains of Streptococcus bovis . Journal of Dairy Science 67:1525–1531
    [Google Scholar]
  17. Stewart C. S., Bryant M. P. 1988; The rumen bacteria. The Rumen Microbial Ecosystem21–75 Hobson P. N. London: Elsevier Applied Science;
    [Google Scholar]
  18. Stewart C. S., Duncan S. H., McPherson C. A., Richardson A. J., Flint H. J. 1990; The implications of the loss and regain of cotton-degrading activity for the degradation of straw by Ruminococ- cus albus strain 007. Journal of Applied Bacteriology 68:349–356
    [Google Scholar]
  19. Strydom E., Mackie R. I., Woods D. R. 1986; Detection and characterisation of extracellular proteases in Butyrivibrio fibrisolvens H17c. Applied Microbiology and Biotechnology 24:214–217
    [Google Scholar]
  20. Van Gylswyk N. O. 1990; Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets. FEMS Microbiology Ecology 73:243–254
    [Google Scholar]
  21. Varel V., Richardson A. J., Stewart C. S. 1989; Degradation of barley straw, ryegrass, and alfalfa cell walls by Clostridium longisporum and Ruminococcus albus . Applied and Environmental Microbiology 55:3080–3084
    [Google Scholar]
  22. Wallace R. J. 1988; Ecology of rumen microorganisms : protein use. Aspects of Digestive Physiology in Ruminants99–122 Dobson A., Dobson M. Ithaca: Cornell University Press;
    [Google Scholar]
  23. Wallace R. J., Brammall M. L. 1985; The role of different species of bacteria in the hydrolysis of protein in the rumen. Journal of General Microbiology 131:821–832
    [Google Scholar]
  24. Wallace R. J., Cotta M. A. 1988; Metabolism of nitrogen- containing compounds. The Rumen Microbial Ecosystem217–249 Hobson P. N. London: Elsevier Applied Science;
    [Google Scholar]
  25. Wallace R. J., McKain N. 1989; Analysis of peptide metabolism by ruminai microorganisms. Applied and Environmental Microbiology 55:2372–2376
    [Google Scholar]
  26. Wallace R. J., Broderick G. A., Brammall M. L. 1987; Microbial protein and peptide metabolism in rumen fluid from faunated and ciliate-free sheep. British Journal of Nutrition 58:87–93
    [Google Scholar]
  27. Wallace R. J., McKain N., Newbold C. J. 1990a; Metabolism of small peptides in rumen fluid. Accumulation of intermediates during hydrolysis of alanine oligomers, and comparison of peptidolytic activities of bacteria and protozoa. Journal of the Science of Food and Agriculture 50:191–199
    [Google Scholar]
  28. Wallace R. J., Newbold C. J., McKain N. 1990b; Patterns of peptide metabolism by rumen microorganisms. The Rumen Ecosystem. The Microbial Metabolism and its Regulation43–50 Hoshino S., Onodera R., Minato H., Itabashi H. Tokyo: Japan Scientific Societies Press;
    [Google Scholar]
  29. Whitelaw F. G., Bruce L. A., Eadie J. M., Shand W. J. 1983; 2-Aminoethylphosphonic acid concentrations in some rumen ciliate protozoa. Applied and Environmental Microbiology 46:951–953
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-9-2259
Loading
/content/journal/micro/10.1099/00221287-137-9-2259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error