1887

Abstract

Summary: When the salt-tolerant yeast was grown in YPD medium containing 15% (w/v) NaCl, the relative amounts of C and C fatty acids in acyl lipids increased and those of C and C acids decreased both in whole cells and in crude plasma membrane preparations, as compared with cells grown in YPD medium alone. The proportions of C and C acids, which are minor components of yeast lipids, decreased in whole cells and markedly increased in plasma membranes when 15% NaCl was included in the growth medium. The degree of unsaturation of fatty acids in the membranes and in whole cells decreased in the presence of 15% NaCl in the culture medium. The amount of free ergosterol in the membranes of cells grown in 15% NaCl increased to 2·9 times that of control cells. The ratio of ergosterol to phospholipid increased to 5 times that of control cells, whereas the ratio of phospholipid to protein in the membranes of cells grown in 15% NaCl decreased to less than half that of control cells. The fluorescence polarization value of DPH (1,6-diphenyl-1,3,5-hexatriene) in membranes of cells grown in 15% NaCl was 1·2 times higher than that for membranes from control cells, indicating a decrease in membrane fluidity in the presence of a high concentration of NaCl.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-1-91
1992-01-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/1/mic-138-1-91.html?itemId=/content/journal/micro/10.1099/00221287-138-1-91&mimeType=html&fmt=ahah

References

  1. Adler L., Blomberg A., Nilsson A. 1985; Glycerol metabolism and osmoregulation in the salt-tolerant yeastDebaryomyces hansenii . Journal of Bacteriology 162:300–306
    [Google Scholar]
  2. Allen R. J. L. 1940; The estimation of phosphorus. Biochemical Journal 34:858–865
    [Google Scholar]
  3. Ben-Amotz A., Avron M. 1983; Accumulation of metabolites by halotolerant algae and its industrial potential. Annual Review of Microbiology 37:95–119
    [Google Scholar]
  4. Brown A. D. 1978; Compatible solutes and extreme water stress in eukaryotic micro-organisms. Advances in Microbial Physiology 17:181–242
    [Google Scholar]
  5. Cooper T. G. 1982; Transport in Saccharomyces cerevisiae The Molecular Biology of the Yeast Saccharomyces . Metabolism and Gene Expression399–461 In pp Edited by Strathem J. N., Jones E. W., Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  6. Chen P. S. JR, Toribara T. Y., Warner H. 1956; Microdetermination of phosphorus. Analytical Chemistry 28:1756–1758
    [Google Scholar]
  7. Csonka L.N. 1989; Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews 53:121–147
    [Google Scholar]
  8. Demel R. A., De Kruyff B. 1976; The function of sterols in membranes. Biochimica et Biophysica Acta 457:109–132
    [Google Scholar]
  9. Edgley M., Brown A. D. 1983; Yeast water relations: physiological changes induced by solute stress in Saccharomyces cerevisiae Saccharomyces rouxii . Journal of General Microbiology 129:3453–3463
    [Google Scholar]
  10. Gadd G. M., Chudek J. A., Foster R., Reed R. H. 1984; The osmotic responses of Penicillium ochro-chloron :changes in internal solute levels in response to copper and salt stress. Journal of General Microbiology 130:1969–1975
    [Google Scholar]
  11. Gancedo G., Gancedo J. M., SOLS A. 1968; Glycerol metabolism in yeasts. Pathways of utilization and production. European Journal of Biochemistry 5:165–172
    [Google Scholar]
  12. Hagemann M., Erdmann N., Wittenburg E. 1987; Synthesis of glucosylglycerol in salt-stressed cells of the cyanobacterium Microcystis firma . Archives of Microbiology 148:275–279
    [Google Scholar]
  13. Higgins C. F., Cairney J., Stirling D. A., Sutherland L., Booth I. R. 1987; Osmotic regulation of gene expression: ionic strength as an intracellular signal ?. Trends in Biochemical Sciences 12:339–344
    [Google Scholar]
  14. Hocking A. D. 1986; Effects of water activity and culture age on the glycerol accumulation patterns of five fungi. Journal of General Microbiology 132:269–275
    [Google Scholar]
  15. Hosono K., Aida K. 1974; Lipid composition of Saccharomyces cerevisiaedefective in mitochondria due to pantothenic acid deficiency. Journal of General and Applied Microbiology 20:47–58
    [Google Scholar]
  16. Hosono K., Hahn-HÄgerdal B. 1986; Separation of yeast protoplasts from membrane ghosts using an aqueous two-phase system. Biochimica et Biophysica Acta 855:189–192
    [Google Scholar]
  17. Hossack J. A., Rose A. H. 1976; Fragility of plasma membranes in Saccharomyces cerevisiaeenriched with different sterols. Journal of Bacteriology 127:67–75
    [Google Scholar]
  18. Hunter K., Rose A. H. 1972; Lipid composition of Saccharomyces cerevisiaeas influenced by growth temperature. Biochimica et Biophysica Acta 260:639–653
    [Google Scholar]
  19. Jennings D. H. 1984; Polyol metabolism in fungi. Advances in Microbial Physiology 25:149–193
    [Google Scholar]
  20. Kates M., Hagen P. O. 1964; Influence of temperature on fatty acid composition of psychrophilic and mesophilicSerratiaspecies. Canadian Journal of Biochemistry 42:481–488
    [Google Scholar]
  21. Lees N. D., Bard M., Kemple M. D., Haak R. A., Kleinhans F. W. 1979; ESR determination of membrane order parameter in yeast sterol mutants. Biochimica et Biophysica Acta 553:469–475
    [Google Scholar]
  22. LeRudulier D., Strom A.R., Dandekar A. M., Smith L.T., Valentine R.C. 1984; Molecular biology of osmoregulation. Science 224:1064–1068
    [Google Scholar]
  23. Letters R. 1968 Phospholipids of yeasts. Aspects of Yeast Metabolism 303–319 In pp Edited by Milles A. K. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  24. Litman B.J., Barenholz Y. 1982; Fluorescent probe: diphenyl- hexatriene. Methods in Enzymology 81:678–685
    [Google Scholar]
  25. Meikle A. J., Reed R.H., Gadd G. M. 1988; Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts of Saccharomyces cerevisiae . Journal of General Microbiology 134:3049–3060
    [Google Scholar]
  26. Onishi H. 1963; Osmophilic yeasts. Advances in Food Research 12:53–94
    [Google Scholar]
  27. Panaretou B., Piper P. W. 1990; Plasma-membrane ATPase action affects several stress tolerances of Saccharomyces cerevisiae Schizosaccharomyces pombeas well as the extent and duration of the heat shock response. Journal of General Microbiology 136: 17631770.
    [Google Scholar]
  28. Rattray J. B. M. 1988 Yeasts. Microbial Lipids 1555–697 In pp Edited by Ratledge C., Wilkinson S. G. London: Academic Press;
    [Google Scholar]
  29. Reed R. H., Borowitzka L.J., MacKay M.A., Chudek J. A., Foster R., Warr S.R.C., Moore D.J., Stewart W. D. P. 1986; Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiology Reviews 39:51–56
    [Google Scholar]
  30. Reed R. H., Chudek J. A., Foster R., Gadd G. M. 1987; Osmotic significance of glycerol accumulation in exponentially growing yeasts. Applied and Environmental Microbiology 53:2119–2123
    [Google Scholar]
  31. Russell N. J. 1989 Functions of lipids: structural roles and membrane functions. Microbial Lipids 2279–365 In pp Edited by Ratledge C., Wilkinson S. G. London: Academic Press;
    [Google Scholar]
  32. Safe S. 1973; The effect of environment on the free and hydrosoluble sterols on Mucor rouxii . Biochimica et Biophysica Acta 326:471–475
    [Google Scholar]
  33. Shaw W. H. C., Jefferies J. P. 1953; The determination of ergosterol in yeast. II. Determination by saponification and ultraviolet absorption spectroscopy. Analyst 78:514–519
    [Google Scholar]
  34. Shinitzky M., Inbar M. 1976; Microviscosity parameters and protein mobility in biological membranes. Biochimica et Biophysica Acta 433:133–149
    [Google Scholar]
  35. Shinitzky M., Barenholz Y. 1978; Fluidity parameters of lipid regions determined by fluorescence polarization. Biochimica et Biophysica Acta 515:367–394
    [Google Scholar]
  36. Singer S. J., Nicolson G. L. 1972; The fluid mosaic model of the structure of cell membranes. Science 175:720–731
    [Google Scholar]
  37. Stoffel W., Chu F., Ahrens E.H. Jr 1959; Analysis of long- chain fatty acids by gas-liquid chromatography. Micromethod for preparation of methyl esters. Analytical Chemistry 31:307–308
    [Google Scholar]
  38. Watanabe Y., Takakuwa M. 1984; Effect of sodium chloride on lipid composition of Saccharomyces rouxii . Agricultural and Biological Chemistry 48:2415–2422
    [Google Scholar]
  39. Wharton D. C., Tzagoloff A. 1967; Cytochrome oxidase from beef heart mitochondria. Methods in Enzymology 10:245–250
    [Google Scholar]
  40. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. 1982; Living with water stress: evolution of osmolyte systems. Science 217:1214–1222
    [Google Scholar]
  41. Yeagle P. L. 1985; Cholesterol and the cell membrane. Biochimica et Biophysica Acta 822:267–287
    [Google Scholar]
  42. vanZyl P.J., Kilian S. G., Prior B.A. 1990; The role of an active transport mechanism in glycerol accumulation during osmoregulation by Zygosaccharomyces rouxii . Applied Microbiology and Biotechnology 34:231–235
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-1-91
Loading
/content/journal/micro/10.1099/00221287-138-1-91
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error