1887

Abstract

Starvation of cells for specific nutrients such as nitrogen, phosphate or sulphate causes arrest in the G phase of the cell cycle at a specific point called ‘start’. Re-addition of different nitrogen sources, phosphate or sulphate to such starved cells causes activation of trehalase within a few minutes. Nitrogen-source-and sulphate-induced activation of trehalase were not associated with any change in the cAMP level, but in the case of phosphate there was a small transient increase. When nitrogen-source-activated trehalase was isolated by immuno-affinity chromatography from crude extracts, the purified enzyme showed the same activity profile as in the original crude extracts, indicating that post-translational modification is responsible for the activation. In the yeast mutants and , which are temperature sensitive for cAMP synthesis, incubation at the restrictive temperature lowered but did not prevent nitrogen-, phosphate- or sulphate-induced activation of trehalase. Since under these conditions the cAMP level in the cells is very low, it is unlikely that cAMP acts as a second messenger in this nutrient-induced effect. Nitrogen-source-induced activation of trehalase requires the presence of glucose at a concentration similar to that able to stimulate the RAS-adenylate cyclase pathway. This indicates that the same glucose-sensing system might be involved in both phenomena. Nitrogen-starved cells fractionated according to cell size all showed nitrogen-source-induced activation of trehalase to the same extent, indicating that the nitrogen-induced signalling pathway involved is not dependent on the well-known cell size requirement for progression over the start point of the cell cycle.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-10-2035
1992-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/10/mic-138-10-2035.html?itemId=/content/journal/micro/10.1099/00221287-138-10-2035&mimeType=html&fmt=ahah

References

  1. Becher DosPassos J.B., , Vanhalewyn M., , BrandÃo R. L., , Castro I. M., , Nicoli J. R., & Thevelein J. M. 1992; Glucose-induced activation of plasma membrane H+-ATPase in mutants of the yeast Saccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation and the initiation of glycolysis. Biochimica et Biophysica Acta 1136:57–67
    [Google Scholar]
  2. Beullens M., , Mbonyi K., , Geerts L., , Gladines D., , Detremerie K., , Jans A. W. H., & Thevelein J. M. 1988; Studies on the mechanism of the glucose-induced cAMP-signal in glycolysis-and glucose repression-mutants of the yeast Saccharomyces cerevisiae . European Journal of Biochemistry 172:227–231
    [Google Scholar]
  3. Broach J. R., & Deschenes R. J. 1990; The function of RAS genes in Saccharomyces cerevisiae . Advances in Cancer Research 54:79–139
    [Google Scholar]
  4. Camonis J. H., & Jacquet M. 1988; A new RAS mutation that suppresses the CDC25 gene requirement for growth of Saccharomyces cerevisiae . Molecular and Cellular Biology 8:2980–2983
    [Google Scholar]
  5. Camonis J. H., , Kalekine M., , Gondre B., , Garreau H., , Boymarcorre E., & Jacquet M. 1986; Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae . EMBO Journal 5:375–380
    [Google Scholar]
  6. Dumont J. E., , Jauniaux J. C., & Roger P. P. 1989; The cyclic AMP-mediated stimulation of cell proliferation. Trends in Biochemi-cal Sciences 14:67–71
    [Google Scholar]
  7. Engelberg D., , Perlman R., & Levitzki A. 1989; Transmembrane signalling in Saccharomyces cerevisiae . Cellular Signalling 1:1–7
    [Google Scholar]
  8. FranÇois J., , Villanueva M. E., & Hers H.-G. 1988; The control of glycogen metabolism in yeast. 1. Interconversion in vivo of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source or uncoupler. European Journal of Biochemistry 174:551–559
    [Google Scholar]
  9. FranÇois J., , Neves M.-J., & Hers H.-G. 1991; The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeast 1, 575–587
    [Google Scholar]
  10. Gibbs J. B., & Marshall M. S. 1989; The ras oncogene-an important regulatory element in lower eucaryotic organisms. Microbiological Reviews 53:171–185
    [Google Scholar]
  11. Jacquet M., & Camonis J. 1985; ContrÔle du cycle de division cellulaire et de la sporulation chez Saccharomyces cerevisiae par le systéme de l'AMP cyclique. Biochimie 67:35–43
    [Google Scholar]
  12. Johnston G. C., , Pringle J. R., & Hartwell L. H. 1977; Coordination of growth with cell division in the yeast Saccharomyces cerevisiae . Experimental Cell Research 105:79–98
    [Google Scholar]
  13. Lillie S. H., & Pringle J. R. 1980; Reserve carbohydrate metabolism in Saccharomyces cerevisiae. Response to nutrient limitation. Journal of Bacteriology 143:1384–1394
    [Google Scholar]
  14. Malone R. E. 1990; Dualregulation of meiosis in yeast. Cell 61:375–378
    [Google Scholar]
  15. Matsumoto K., , Uno I., & Ishikawa T. 1983; Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase. Experimental Cell Research 146:151–161
    [Google Scholar]
  16. Matsumoto K., , Uno I., & Ishikawa T. 1985; Genetic analysis of the role of cAMP in yeast. Yeast 1:15–24
    [Google Scholar]
  17. Mbonyi K., , Beullens M., , Detremerie K., , Geerts L., & Thevelein J. M. 1988; Requirement of one functional RAS gene and inability of an oncogenic ras variant to mediate the glucose-induced cyclic AMP signal in the yeast Saccharomyces cerevisiae . Molecular and Cellular Biology 8:3051–3057
    [Google Scholar]
  18. Pringle J. R., & Hartwell L. H. 1981 The Saccharomyces cerevisiae cell cycle. In The Molecular Biology of the Yeast Saccharomyces. Metabolism and Gene Expression, pp. 97–142 Edited by Strathem J. N., , Jones E. W., & person-group-type="editor"> Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Rivin C. J., & Fangman W. L. 1980; Cell-cycle phase expansion in nitrogen-limited cultures of Saccharomyces cerevisiae . Journal of Cell Biology 85:96–107
    [Google Scholar]
  20. Sherman F., , Fink G. R., & Hicks J. B. 1986 Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Thevelein J. M. 1984a; Cyclic-AMP content and trehalase activation in vegetative cells and ascospores of yeast. Archives of Microbiology 138:64–67
    [Google Scholar]
  22. Thevelein J. M. 1984b; Regulation of trehalose mobilization in fungi. Microbiological Reviews 48:42–59
    [Google Scholar]
  23. Thevelein J. M. 1988; Regulation of trehalase activity by phosphorylation-dephosphorylation during developmental transi-tions in fungi. Experimental Mycology 12:1–12
    [Google Scholar]
  24. Thevelein J. M. 1991; Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Molecular Microbiology 5:1301–1307
    [Google Scholar]
  25. Thevelein J. M. 1992 The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. Antonie van Leeuwenhoek, Journal of Microbiology. . Special Issue: Molecular Biology of Yeasts Edited by Grivell L. 62109–130
    [Google Scholar]
  26. Thevelein J. M., & Beullens M. 1985; Cyclic AMP and the stimulation of trehalase activity in the yeast Saccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis. Journal of General Microbiology 131:3199–3209
    [Google Scholar]
  27. Thevelein J.M., , Vanlaere A. J., , Beullens M., , Van Assche J. A., & Carlier A. R. 1983; Glucose-induced trehalase activation and trehalose mobilization during early germination of Phycomyces blakesleeanus spores. Journal of General Microbiology 129:719–726
    [Google Scholar]
  28. Thevelein J. M., , Beullens M., , Honshoven F., , Hoebeeck G., , Detremerie K., , Den Hollander J. A., & Jans A. W. H. 1987; Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: intracellular pH and the effect of membrane depolarizing com-pounds. Journal of General Microbiology 133:2191–2196
    [Google Scholar]
  29. Toda T., , Uno I., , Ishikawa T., , Powers S., , Kataoka T., , Broek D., , Cameron S., , Broach J., , Matsumoto K., & Wigler M. 1985; In yeast, Ras proteins are controlling elements of adenylate cyclase. Cell 40:27–36
    [Google Scholar]
  30. Trevelyan W. E., & Harrison J. S. 1956; Studies on yeast metabolism. V. The trehalose content of baker's yeast during anaerobic fermentation. Biochemical Journal 62:177–183
    [Google Scholar]
  31. Van Aelst L., , Boy-Marcotte E., , Camonis J. H., , Thevelein J.M., & Jacquet M. 1990; The C-terminal part of the CDC25 gene product plays a key role in signal transduction in the glucose-induced modulation of cAMP level in Saccharomyces cerevisiae . European Journal of Biochemistry 193:675–680
    [Google Scholar]
  32. Van Aelst L., , Jans A. W. H., & Thevelein J. M. 1991; Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae . Journal of General Microbiology 137:341–349
    [Google Scholar]
  33. Van Der Plaat J. B. 1974; Cyclic 3′,5′-adenosine monophosphate stimulates trehalose degradation in baker's yeast. Biochemical and Biophysical Research Communications 56:580–587
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-10-2035
Loading
/content/journal/micro/10.1099/00221287-138-10-2035
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error