1887

Abstract

The cellular fatty acid composition of 10 isolates of symbiotic cyanobacteria from 7 different species of the aquatic fern was investigated. Sixteen major components accounted for 88.31% of total fatty acids: the saturated 14:0, 16:0 and 18:0 carbon chains; the unsaturated straight-chained 12:1, 14:1 -7, 16:1 -7, 16:1 -9, 16:1 -11, 18:2 -9, 18:3 -9, 18:1 -and -9, and 20:4 -5; and the branch-chained -16:0. Also included was an unsaturated 16-carbon (equivalent carbon chain length of 15.5), with unsaturation sites undetermined. The most abundant component was the 16:0 (mean of 38.10% of the total). Thirty-six minor fatty acids, comprising 10.30% of the total, were detected and identified. These included hydroxy-substituted fatty acids (1.10%), branched chains in addition to the -16:0 (1.96% of a class total of 2.96%) and cyclopropane fatty acids (0.89%). A comparison of the fatty acid profile of cyanobionts with those previously published for free-living cyanobacteria of the genera and indicated that there were at least 19 individual fatty acids, class totals or ratios that were statistically different and could be used as differentiating factors. Nine of the 19 factors were characteristically unique to cyanobionts and different from both and . Five were different from only , and five from only . Based on one taxonomic interpretation of fatty acid analysis, the cyanobionts appeared to be equally distinct from and from .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-7-1489
1992-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/7/mic-138-7-1489.html?itemId=/content/journal/micro/10.1099/00221287-138-7-1489&mimeType=html&fmt=ahah

References

  1. Asselineau J. 1962 The Bacterial Lipids San Francisco: Holden-Day;
    [Google Scholar]
  2. Caudales R., Antoine A. D., Vasconcelos A. C. 1990; Morphology and life cycle of the nitrogen-fixing cyanobionts in the seven Azolla species. In Nitrogen Fixation: Achievements and Objectives. Proceedings of the 8th International Congress of Nitrogen Fixation p. 540 Edited by Gresshoff P. M., Evans Roth L., Stacey G., Newton W. E. New York: Chapman & Hall;
    [Google Scholar]
  3. Caudales R., Wells J. M. 1992; Differentiation of the free-living Anabaena and Nostoc cyanobacteria on the basis of fatty acid composition. International Journal of Systematic Bacteriology 42 246 251
    [Google Scholar]
  4. Castenholz R. W. 1989; Nostocales. In Bergey’s Manual of Systematic Bacteriology vol. 3 pp. 1780 1789 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Christie W. W. 1987 High-performance Liquid Chromatography And Lipids, a Practical Guide pp. 48 49 New York: Pergamon Press;
    [Google Scholar]
  6. De Long E. F., Yayanos A. A. 1986; Biochemical function and ecological significance of novel bacterial lipids in deep sea prokaryotes. Applied and Environmental Microbiology 51 730 737
    [Google Scholar]
  7. Drews G., Weckesser J. 1982; Function, structure and composition of cell walls and external layers. In The Biology of Cyanobacteria pp. 333 357 Edited by Carr N. G., Whitton B. A. Berkeley: University of California Press;
    [Google Scholar]
  8. Fogg G. E., Steward W. D. P., Fay P., Walsby B. 1973 The Blue-Green Algae New York: Academic Press;
    [Google Scholar]
  9. Gebhardt J. S., Nierzwicki-Bauer S. A. 1991; Identification of a common cyanobacterial symbiont associated with Azolla spp. through molecular and morphological characterization of free-living and symbiotic cyanobacteria. Applied and Environmental Microbiology 57 2141 2146
    [Google Scholar]
  10. Geitler L. 1932; Cyanophyceae. In Rabenhorst’s Krypogamenflora von Deutschland, Osterreich und der Schweiz vol. 14 Edited by Kolkwitz R. Leipzig: Akademische Verlagsgesellschaft;
    [Google Scholar]
  11. Gillan F. T., Hogg R. W. 1984; A method for the estimation of bacterial biomass and community structure in mangrove-associated sediments. Journal of Microbiological Methods 2 275 293
    [Google Scholar]
  12. Golecki J. R., Drews G. 1982; Supramolecular organization and composition of membranes. In The Biology of Cyanobacteria pp. 333 357 Edited by Carr N. G., Whitton B. A. Berkeley: University of California Press;
    [Google Scholar]
  13. Hill D. J. 1975; The pattern of development of Anabaena in the Azolla-Anabaena symbiosis. Planta 122 179 184
    [Google Scholar]
  14. Johns R. B., Perry G. J. 1977; Lipids of the marine bacterium Flexibacter polymorphus. Archives of Microbiology 114 267 271
    [Google Scholar]
  15. Kaneda T. 1991; Iso- and anteiso fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiological Reviews 55 288 302
    [Google Scholar]
  16. Kirchner O. 1900; Nostocacea: In Naturliche Pflanzenfamilien, 1 Teil, 4 Abt. pp. 70 72 Edited by Engler A., Prant K. Leipzig: Wilhelm Englemann;
    [Google Scholar]
  17. Lumpkin T. A., Plucknett D. L. 1982; Botany and ecology. In Azolla as a Green Manure: Use and Management in Crop Production pp. 15 38 Westview Tropical Series, no. 5 Boulder, Colerado: Westview Press;
    [Google Scholar]
  18. Meeks J. C., Joseph C. M., Haselkorn R. 1988; Organization of nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros. Archives of Microbiology 150 61 71
    [Google Scholar]
  19. Meeks J. C. 1990; Cyanobacterial-Bryophyte Associations. CRC Handbook of Symbiotic Cyanobacteria pp. 43 63 Edited by Rai A. M. Boca Raton: CRC Press;
    [Google Scholar]
  20. Moss C. W. 1979; Analysis of cellular fatty acids of bacteria by gas–liquid chromatography. In Legionnaires: the Disease, Bacteria and Methodology pp. 117 122 Edited by Jones G. L., Herbert G. A. Atlanta: US Dept, of Health, Education & Welfare, Centers for Disease Control;
    [Google Scholar]
  21. Peters G. A., Meeks J. C. 1989; The Azolla–Anabaena symbiosis: basic biology. Annual Review of Plant Physiology vol. 40 pp. 193 210 New York: Academic Press;
    [Google Scholar]
  22. Plazinski J., Zheng G., Tailor R., Croft L., Rolfe B. G., Gunning B. E. S. 1990; DNA probes show genetic variation in cyanobacterial symbionts of the Azolla fern and closer relationship to free-living Nostoc strains than to free-living Anabaena strains. Applied and Environmental Microbiology 56 1263 1270
    [Google Scholar]
  23. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. 1979; Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111 1 61
    [Google Scholar]
  24. Rippka R. 1988; Recognition and identification of cyanobacteria. Methods in Enzymology 167 28 67
    [Google Scholar]
  25. Sato N., Murata N. 1981; Studies on the temperature-shift-induced desaturation of fatty acids in monogalactosyl diacylglycerol in blue-green algae (Cyanobacterium), Anabaena variabilis. Plant and Cell Physiology 22 1043 1050
    [Google Scholar]
  26. Snedecor G. W. 1966 Statistical Methods , 5th Edn.. Ames, Iowa: Iowa State University Press;
    [Google Scholar]
  27. Strasburger E. 1873 Ueber Azolla pp. 76 86 Leipzig: Verlag von Ambr. Abel;
    [Google Scholar]
  28. Strasburger E. 1884 Das Botanische Practicum Jena & Leipzig: Gustav Fischer;
    [Google Scholar]
  29. Van Hove C., Diara H. F., Godard P. 1983; Azolla in West Africa (Azolla Project of the West Africa Rice Development Association and Belgium Administration for Development and Cooperation). Brussels:
    [Google Scholar]
  30. Vasishta P. C. 1975; Vascular cryptogams (Pteridophyta). In Botany for Degree Students vol. IV pp. 443 454 New Delhi: S. Chand & Co. (Pvt);
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-7-1489
Loading
/content/journal/micro/10.1099/00221287-138-7-1489
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error