1887

Abstract

Chemotaxis and substrate-regulated motility of the rice isolate sp. JW-KR2 was studied. Growth on alcohols produced motile cells possessing several peritrichous flagella while growth in the presence of organic acids, such as succinate, repressed flagellar synthesis, leading to nonmotile cells. Addition of 2·5 m-adenosine 3′,5′-cyclic monophosphate (cAMP) to the culture resulted in motile cells even when succinate was the sole carbon source. Chemotaxis assays using microcapillary pipettes revealed a positive response to 1-propanol, 2-propanol, 1-butanol, 2-butanol and 1-pentanol but not to methanol, ethanol, isoamyl alcohol, hexanol, sugars, Casamino acids, tricarboxylic acid (TCA) cycle intermediates, butyrate, propionate, acetone or rice root exudates. The presence of TCA cycle intermediates in the chemotaxis assay inhibited chemotaxis towards butanol. Although the direct role of mobility and chemotaxis in the -rice interaction is uncertain, one possibility is that uses alcohols as a signal to move towards microaerobic zones, such as the rice rhizosphere, where carbon and energy sources such as H, CO, organic acids, alcohols and other anaerobic metabolites are present.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-4-815
1993-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/4/mic-139-4-815.html?itemId=/content/journal/micro/10.1099/00221287-139-4-815&mimeType=html&fmt=ahah

References

  1. Adler J. 1975; Chemotaxis in bacteria. Annual Review of Biochemistry 44:341–356
    [Google Scholar]
  2. Adler J, Templeton B. 1967; The effectof environmental conditions on the motility of Escherichia coli. Journal of General Microbiology 46:175–184
    [Google Scholar]
  3. Allen R. N., Newhook F. J. 1973; Chemotaxis of zoospores of Phytophthora cinnamomi to ethanol in capillaries of soil pore dimensions. Transactions of the British Mycological Society 61:287–302
    [Google Scholar]
  4. Aragno M, Walther-Mauruschat A., Mayer F, Schlegel H. G. 1977; Micromorphology of Gram-negative hydrogen bacteria. I. Cell morphology and flagellation. Archives of Microbiology 114:93–100
    [Google Scholar]
  5. Ashby A. M., Watson M. D., Loake G. J., Shaw C. H. 1988; Ti plasmid-specific chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. Journal of Bacteriology 170:4181–4187
    [Google Scholar]
  6. Bassler B. L., Gibbons P. J., Yu C, Roseman S. 1991; Chitin utilization by marine bacteria. Journal of Biological Chemistry 266:24268–24275
    [Google Scholar]
  7. Bolton E. F., Erickson A. E. 1970; Ethanol concentration in tomato plants during soil flooding. Agronomy Journal 62:220–224
    [Google Scholar]
  8. Boureau M. 1977; Application de la chromatographie en phase gazeuse à l’étude de l’exsudation racinaire du riz. Cahiers ORSTROM Serie Biologie 12:75–81
    [Google Scholar]
  9. Currier W. W., Strobel G. A. 1976; Chemotaxis of Rhizobium spp. to plant root exudates. Plant Physiology 57:820–823
    [Google Scholar]
  10. Dobrogosz W. J., Hamilton P. B. 1971; The role of cyclic AMP in chemotaxis in Escherichia coli. Biochemistry and Biophysics Communication 42:202–207
    [Google Scholar]
  11. Gaworzewska E. T., Carlile M. J. 1982; Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants. Journal of General Microbiology 128:1179–1188
    [Google Scholar]
  12. Haneline S, Connelly C. J., Melton T. 1991; Chemotactic behavior of Azotobacter vinelandii. Applied and Environmental Microbiology 57:825–829
    [Google Scholar]
  13. Hazelbauer G. L., Adler J. 1971; Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nature New Biology 230:101–104
    [Google Scholar]
  14. Jenni B, Aragno M. 1987; Xanthobacter agilis sp. nov., a motile, dinitrogen-fixing, hydrogen-oxidizingbacterium. Systematic and Applied Microbiology 9:254–257
    [Google Scholar]
  15. Mellor H. Y., Glenn A. R., Arwas R., Dilworth M. J. 1987; Symbiotic and competitive properties of motility mutants of Rhizobium trifolii 1. Archives of Microbiology 148:34–39
    [Google Scholar]
  16. Mikheeva G. A. 1985; Effect of cyclic 3´–5´-adenosine monophosphate on the growth rate of Escherichia coli. Microbiology 54:704–707
    [Google Scholar]
  17. Oyaizu-Masuchi Y, Komagata K. 1988; Isolation of free-living nitrogen fixing bacteria from the rhizosphere of rice. Journal of General and Applied Microbiology 34:127–164
    [Google Scholar]
  18. Reding H. K., Hartel P. G., Wiegel J. 1991; Effect of Xanthobacter, isolated and characterized from rice roots, on growth of wetland rice. Plant and Soil 138:221–229
    [Google Scholar]
  19. Reding H. K., Croes C. L. M., Dijkhuizen L., Wiegel J. 1992; Emendation of Xanthobacter flavus as a motile species. International Journal of Systematic Bacteriology 42:309–311
    [Google Scholar]
  20. Reinhold B, Hurek T, Fendrik I. 1985; Strain-specific chemotaxis of Azospirillum spp. Journal of Bacteriology 162:190–195
    [Google Scholar]
  21. Shonnard D. R., Taylor R. T., Tompson A., Knapp R. B. 1992; Hydrodynamic effects on microcapillary motility and chemotaxis assays of Methylosinus trichosporium OB3b. Applied and Environmental Microbiology 58:2737–2743
    [Google Scholar]
  22. Silverman M, Simon M. 1974; Characterization of Escherichia coli flagellar mutants that are sensitive to catabolite repression. Journal of Bacteriology 120:1196–1203
    [Google Scholar]
  23. Smith J. L., Doetsch F. N. 1969; Studies on negative chemotaxis and the survival value ofmotility in Pseudomonas fluorescens. Journal of General Microbiology 55:379–391
    [Google Scholar]
  24. Tso W., Adler J. 1974; Negative chemotaxis in Escherichia coli. Journal of Bacteriology 118:560–576
    [Google Scholar]
  25. Valentine R. C., Shapiro B. M., Stadtmen E. R. 1968; Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 72143–2152
    [Google Scholar]
  26. Wiegel J. 1991; Genus Xanthobacter. In The Prokaryotes. A Handbook on the Biology of Bacteria. Ecophysiology, Isolation,Identification, Application,, 2nd edn. III pp. 2362–2383 Balows H. others Edited by New York Amsterdam: Springer Verlag;
    [Google Scholar]
  27. Wiegel J., Schlegel H. G. 1976; Enrichment and isolation of nitrogen-fixing hydrogen bacteria. Archives of Microbiology 107:139–142
    [Google Scholar]
  28. Wiegel J. K. W., Schlegel H. G. 1984; Genus Xanthobacter Wiegel, Wilke Baumgarten, Opitz and Schlegel 1978, 573AL. In Bergey’s Manual of Systematic Bacteriology 1 pp. 325–333 Krieg N. R., Holt J. G. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  29. Yokota T, Gots J. S. 1970; Requirement of adenosine 3´,5´-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. Journal of Bacteriology 103:513–516
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-4-815
Loading
/content/journal/micro/10.1099/00221287-139-4-815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error