1887

Abstract

Mutants of bv. MNF300 and bv. WU95 unable to accumulate 4-hydroxybenzoate lack 4-hydroxybenzoate hydroxylase. The capacity of these mutants to take up and grow on 4-hydroxybenzoate was restored by a 2.0 kb RI-DNA fragment. This contained only one ORF which had over 60% DNA sequence similarity with the structural gene for 4-hydroxybenzoate hydroxylase () from spp. and Reported effects of metabolic inhibitors and substrate analogues on the apparent uptake of 4-hydroxybenzoate have now been shown to be due to their direct effect on 4-hydroxybenzoate hydroxylase. We propose that uptake of 4-hydroxybenzoate is via a metabolic ‘drag’ mechanism dependent on the activity of the gene product.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-10-2775
1994-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/10/mic-140-10-2775.html?itemId=/content/journal/micro/10.1099/00221287-140-10-2775&mimeType=html&fmt=ahah

References

  1. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. 1988 Current Protocols in Molecular Biology New York: John Wiley & Sons;
    [Google Scholar]
  2. Bae Y.M., Stauffer G.V. Mutations that affect activity of the Rhizobium meliloti trpE(G) promoter in Rbizobium meliloti and Escherichia coli. J Bacteriol 1991; 173:5831–5836
    [Google Scholar]
  3. Boyer H.W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 1969; 41:459–472
    [Google Scholar]
  4. Brewin N.J., Wood E.A., Johnston A.W.B., Dibb N.J., Hombrecher G. Recombinant nodulation plasmids in Rhiapbium leguminosarum. J Gen Microbiol 1982; 128:1817–1827
    [Google Scholar]
  5. Brown C.M., Dilworth M.J. Ammonia assimilation by Rhizobium cultures and bacteroids. J Gen Microbiol 1975; 86:39–48
    [Google Scholar]
  6. Chen Y.P., Glenn A.R., Dilworth M.J. Uptake and oxidation of aromatic substrates by Rhizobium leguminosarum MNF3841 and Rhizobium trifolii TA1. FEMS Microbiol Lett 1984; 21:201–205
    [Google Scholar]
  7. De Maagd R.A., Mulders I.H., Canter H.C., Cremers B.J., Lugtenberg B.J. Cloning, nucleotide sequencing, and expression in Escherichia coli of a Rhizobium leguminosarum gene encoding a symbiotically repressed outer membrane protein. J Bacteriol 1992; 174:214–221
    [Google Scholar]
  8. De Vos G.F., Walker G.C., Signer E.T. Genetic manipulations in Rhizobium meliloti utilizing two new transposon Tn5 derivatives. Mol & Gen Genet 1986; 204:485–491
    [Google Scholar]
  9. Dilworth M.J., McKay I., Franklin M., Glenn A.R. Catabolite effects on enzyme induction and substrate utilization in Rhizobium leguminosarum. J Gen Microbiol 1983; 129:359–366
    [Google Scholar]
  10. DiMarco A.A., Averhoff B., Kim E.E., Ornston L.N. Evolutionary divergence of pobA, the structural gene encoding p-hvdroxybenzoate hydroxylase in an Acinetobacter calcoaceticus strain well-suited for genetic analysis. Gene 1993a; 125:25–33
    [Google Scholar]
  11. DiMarco A.A., Averhoff B., Ornston L.N. Identification of the transcriptional activator pobR and charac-terization of its role in the expression of pobA, the structural gene for p-hydroxybenzoate hydroxylase in Acinetobacter calcoaceticus. J Bacteriol 1993b; 175:4499–4506
    [Google Scholar]
  12. Ditta G., Stanfield S., Corbin D., Helinski D.R. Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 1980; 77:7347–7351
    [Google Scholar]
  13. Doten R.C., Ngai K.-L., Mitchell D.J., Ornston L.N. Cloning and genetic organization of the pea gene cluster from Acinetobacter calcoaceticus. J Bacteriol 1987; 169:3168–3174
    [Google Scholar]
  14. Downie J.A., Hombrecher G., Ma Q.-S., Knight C.D., Wells B. Cloned nodulation genes of Rhizobium leguminosarum determine host-range specificity. Mol & Gen Genet 1983; 190:359–365
    [Google Scholar]
  15. Entsch B., Ballou D.P., Massey V. Flavin-oxvgen derivatives involved in hydroxvlation by p-hydroxvbenzoate hydroxylase. J Biol Chem 1976; 251:2550–2563
    [Google Scholar]
  16. Entsch B., Nan Y., Weaich K., Scott K.F. Sequence and organization of pobA, the gene coding for p-hydroxybenzoate hydroxylase, an inducible enzyme from Pseudomonas aeruginosa. Gene 1988; 71:279–291
    [Google Scholar]
  17. Gray J.X., Djordjevic M., Rolfe B.G. Two genes that regulate exopolysaccharide production in Rhizobium sp. strain NGR234: DNA sequences and resultant phenotypes. J Bacteriol 1990; 172:193–203
    [Google Scholar]
  18. Hanahan D., Jessee J., Bloom F.R. Plasmid transformation in Escherichia coli and other bacteria. Methods Enzymol 1991; 204:63–113
    [Google Scholar]
  19. Harley C.B., Reynolds R.P. Analysis of E. coli promoter sequences. Nucleic Acids Res 1987; 15:2343–2361
    [Google Scholar]
  20. Hartnett G.B., Averhoff B., Ornston L.N. Selection of Acinetobacter calcoaceticus mutants deficient in the p-hydroxybenzoate hydroxylase gene (pobA), a member of a supraoperonic cluster. J Bacteriol 1990; 172:6160–6161
    [Google Scholar]
  21. Hughes E.J., Shapiro M.K., Houghton J.E., Ornston L.N. Cloning and expression of pea genes from Pseudomonas putida in Escherichia coli. J Gen Microbiol 1988; 134:2877–2887
    [Google Scholar]
  22. Johnston A.W.B., Beringer J.E. Identification of the Rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol 1975; 87:343–350
    [Google Scholar]
  23. Neidle E.L., Ornston L.N. Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene cat A in Escherichia coli. J Bacteriol 1986; 168:815–820
    [Google Scholar]
  24. Neidle E.L., Hartnett C., Ornston L.N., Bairoch A., Rekik M., Harayama S. Nucleotide sequences of the Acinetobacter calcoaceticus ben ABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J Bacteriol 1991; 173:5385–5395
    [Google Scholar]
  25. Peters N.K., Verma D.P.S. Phenolic compounds as regulators of gene expression in plant-microbe interactions. Mol Plant-Microbe Interact 1990; 3:4–8
    [Google Scholar]
  26. Raibaud O., Schwartz M. Positive control of transcription initiation in bacteria. Annu Rev Gen 1984; 18:173–206
    [Google Scholar]
  27. Recourt K., Van Brussel A.A.N., Driessen A.J.M., Lugtenberg B.J.J. Accumulation of a nod gene inducer, the flavonoid naringenin, in the cytoplasmic membrane of Rhizobium leguminosarum biovar viciae is caused by the pH-dependent hydrophobicity of naringenin. J Bacteriol 1989; 171:4370–4377
    [Google Scholar]
  28. Rothmel R.K., Aldrich T.L., Houghton J.E., Coco W.M., Ornston L.N., Chakrabarty A.M. Nucleotide sequencing and characterization of Pseudomonas putida catR: a positive regul ator of the catBC operon is a member of the LysR family. J Bacteriol 1990; 172:922–931
    [Google Scholar]
  29. Rottenberg H. The measurement of trans-membrane electrochemical proton gradients. J Bioenerg 1975; 7:61–74
    [Google Scholar]
  30. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratorj Manual, 2nd edn. 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Shanley M.S., Neidle E.L., Perales R.E., Ornston L.N. Cloning and expression of Acinetobacter calcoaceticus catBCDE genes in Pseudomonas putida and Escherichia coli. J Bacteriol 1986; 165:557–563
    [Google Scholar]
  32. Smith I. 1960; Phenolic acids. In Chromatographic and Electrophoretic Techniques 1 pp. 291–307 Edited by Smith I. London: William Heinemann;
    [Google Scholar]
  33. Stanier R.Y., Ornston L.N. The β-ketoadipate pathway. Adv Microb Physiol 1973; 9:59–151
    [Google Scholar]
  34. Staskawicz B., Dahlbeck D., Keen N., Napoli C. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 1987; 169:5789–5794
    [Google Scholar]
  35. Thayer J.R., Wheelis M.L. Active transport of benzoate in Pseudomonas putida. J Gen Microbiol 1982; 128:1749–1753
    [Google Scholar]
  36. Van Berkel W., Westphal A., Eschrich K., Eppink M., De Kok A. Substitution of Arg214 at the substrate-binding site of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur J Biochem 1992; 210:411–419
    [Google Scholar]
  37. Wheelis M.L. The genetics of dissimilatory pathways in Pseudomonas. Annu Rev Microbiol 1975; 29:505–522
    [Google Scholar]
  38. Wong C.M., Dilworth M.J., Glenn A.R. Evidence for two uptake systems in Rhizobium leguminosarum for hydroxy- aromatic compounds metabolized by the 3-oxoadipate pathway. Arch Microbiol 1991; 156:385–391
    [Google Scholar]
  39. Yanisch-Perron C., Vieira J., Messing J. Improved M13 cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 1985; 33:103–119
    [Google Scholar]
  40. Yeh W.K., Ornston L.N. Evolutionarily homologous α2−2oligomeric structures in β-ketoadipate succinyl CoA transferases from Acinetobacter calcoaceticus and Pseudomonas putida. J Biol Chem 1981; 256:1565–1569
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-10-2775
Loading
/content/journal/micro/10.1099/00221287-140-10-2775
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error