1887

Abstract

is a large, morphologically conspicuous, sediment-dwelling bacterium. Nothing is known concerning its phylogeny and it has eluded all attempts at laboratory cultivation. The limited physiological description of has been based on morphological features of the bacterium such as the presence of intracellular sulphur inclusions. cells were purified from a wetland region close to Rydal Water (Cumbria, UK). Scanning and transmission electron microscopy revealed that a number of morphologically distinct cell-types, based on cell surface features and the size and abundance of calcite and sulphur inclusions within the cells, were present in a single sample of purified cells. PCR was used to amplify almost full-length 16S rRNA gene sequences from DNA extracted from cells directly purified from sediments. The PCR products were cloned and partial sequences (approx. 400 bp) were determined for seven of the clones. Three different sequence clusters were recovered from the clone libraries. A near full-length (1489 bp) 16S rRNA gene sequence was determined for a representative clone of the most dominant sequence-type (52 % of the sequences). Comparative sequence analysis showed to form a deep branching lineage within the γ-subdivision of the Proteobacteria. was related most closely to the assemblage that includes sulphur-oxidizing symbiotic bacteria, purple sulphur bacteria, and sulpur- and iron-oxidizing thiobacilli. Phylogenetic inferences made using distance, parsimony and maximum likelihood methods all placed with this group of bacteria. Bootstrap support for a relationship with any particular lineage within the assemblage was weak. The seven clone sequences recovered from the cells however formed a monophyletic group well supported by bootstrap analysis (85–100% support depending on the analysis done). It was concluded that was related to organisms of the assemblage but constituted a novel lineage within this group of bacteria. cells were confirmed as the source of the 16S rRNA sequence obtained, by the use of a fluorescently-labelled 165 rRNA-targeted oligonucleotide specific for the rRNA sequence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-9-2341
1996-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/9/mic-142-9-2341.html?itemId=/content/journal/micro/10.1099/00221287-142-9-2341&mimeType=html&fmt=ahah

References

  1. American Public Health Association 1980 Standard Methods for the Examination of Water and Wastewater, 15th edn.. Washington, DC: American Public Health Association;
    [Google Scholar]
  2. Amann R. I., Krumholz L., Stahl D. A. 1990a; Fluorescent- oligonucleotide probing of whole cells for determinative, phylo-genetic and environmental studies in microbiology. J Bacterial 172:762–770
    [Google Scholar]
  3. Amann R. I., Binder B. J., Olson R. J., Chisolm S. W., Devereux R., Stahl D. A. 1990b; Combmation of 16S rRNA-targetcd oligonucleotide probes with flow cvtometry tor analysing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  4. Amann R. I., Ludwig W., Schleifer K.-H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  5. Babenzien H.-D. 1991; Achromatium oxaliferum and its ecological niche. Zentralbl Mikrobiol 146:41–49
    [Google Scholar]
  6. Babenzien H.-D. 1992; Colonization of the sediment-water interface by Achromatium oxaliferum. . In Abstracts of the Sixth International Symposium on Microbial Ecology, Barcelona, 6–11 September 1992 p. 247
    [Google Scholar]
  7. de Boer W. E., La Riviere J. W. M., Schmidt K. 1971; Some properties of Achromatium oxaliferum. . Antonie Eeeuwenhoek 37:553–563
    [Google Scholar]
  8. Clayton R. A., Sutton G., Hinkle P. S. Jr Bult C., Fields C. 1995; Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacterial 45:595–599
    [Google Scholar]
  9. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes.Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 177843–7853
    [Google Scholar]
  10. Ehrenreich A., Widdel F. 1994; Anaerobic, oxidation of ferrous iron by purple bacteria, a new Lype of phototrophic metabolism. Appl Environ Microbiol 60:4517–4526
    [Google Scholar]
  11. Embley T. M. 1991; The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 13:171–174
    [Google Scholar]
  12. Felsenstein J. 1989; phylip-phylogeny inference package. Cladistics 5:164–166
    [Google Scholar]
  13. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376
    [Google Scholar]
  14. Gicklhorn J. 1920; Über neue fathlose SchwTefelbakterien. Zen-tralbl Bakteriol Parasitenk Infektionskr Hyg 50:415–427
    [Google Scholar]
  15. Gutell R. R., Weiser B., Woese C. R., Noller H. F. 1985; Comparative anatomy of 16S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32:155–216
    [Google Scholar]
  16. Gutell R. R., Larsen N., Woese C. R. 1994; Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58:10–26
    [Google Scholar]
  17. Head I. M., Gray N. D., Pickup R. W., Jones J. G. 1995; The biogcochcmical role of Achromatium oxaliferum. . In Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History.Selected papers from the 17th International Meeting on Organic Geochemistry, 4th–8th September 1995, Donostia San Sebastian, The Basque Country, Spain pp. 895–898 Grimalt J. O., Dorronsoro C. Edited by Donostia-San Sebastian: AlGOA;
    [Google Scholar]
  18. Jones J. G. 1979 A Guide to Methods for Estimating Microbial Numbers and Biomass in Freshwater Freshwater Biological Association Scientific Publication 39 Amhleside, UK: Freshwater Biological Association;
    [Google Scholar]
  19. Jørgensen B. B. 1982; Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Phil Trans Roy Soc Eond B 298:543–561
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969; E volution ot protein molecules. In Mammalian Protein Metabolism pp. 21–132 Munro H. N. Edited by New York: Academic Press;
    [Google Scholar]
  21. Kopczynski E. D., Bateson M. M., Ward D. M. 1994; Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl Environ Microbiol 60:746–748
    [Google Scholar]
  22. Krawiec S., Riley M. 1990; Organization of the bacterial chromosome. Microbiol Rev 54:502–539
    [Google Scholar]
  23. La Riviere J. W. M., Schmidt K. 1989; The Genus Achromatium. . In Bergey’s Manual of Systematic Bacteriology 3 pp. 2131–2133 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  24. La Riviere J. W. M., Schmidt K. 1991; Morphologically conspicuous sulfur-oxidizing Eubacteria. In The Prokaryotes, 2nd edn. pp. 3934–3947 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. Edited by New York: Fischer Verlag;
    [Google Scholar]
  25. Lane D. J., Harrison A. P. Jr Stahl D., Pace B., Giovannoni S. J., Olsen G. J., Pace N. R. 1992; Evolutionary relationships among sulphur-and iron-oxidizing eubacteria. Journal of Bacteriology 174:269–278
    [Google Scholar]
  26. Lloyd D., Davies K. J. P., Boddy L. 1986; Mass spectrometry as an ecological tool for in situ measurement of dissolved gases in sediment systems. FEMS Microbiol Ecol 38:11–17
    [Google Scholar]
  27. MacNaughton S. J., O’Donnell A. G., Embley T. M. 1994; Permeabilization of mycolic acid containing actinomycetes for in situ hybridization with fluorescently labelled oligonucleotide probes. Microbiology 140:2859–2865
    [Google Scholar]
  28. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  29. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H. 1992; Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600
    [Google Scholar]
  30. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. . Int J Syst Bacterial 40:213–215
    [Google Scholar]
  31. Nadson G. A., Visloukh S. M. 1923; La structure et la vie de la bactérie géante Achromatium oxaliferum Schew. Bull Jardin Imp Bot St Petersbourg Suppl 1 22:1–37
    [Google Scholar]
  32. Neefs J.-M., Van de Peer Y., De Rijk P., Chapelle S., De Wachter R. 1993; Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res 21:3025–3049
    [Google Scholar]
  33. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  34. Pearson W. R. 1990; Rapid and sensitive sequence comparison with fastp and fasta. Methods Enpymol 183:63–98
    [Google Scholar]
  35. Pickup R. W. 1995; Sampling and detecting bacterial populations in natural environments. In Population Genetics of Bacteria pp. 295–315 Baumberg S., Young J. P. W., Saunders J. R., Wellington E. M. H. Edited by Cambridge: Microbiology Society;
    [Google Scholar]
  36. Polz M. F., Distel D. L., Zarda B., Amann R., Felbeck H., Ott J. A., Cavanaugh C. M. 1994; Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a marine nematode. Appl Environ Microbiol 60:4461–4467
    [Google Scholar]
  37. Saitou N., Nei M. 1987; The neighbor joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  38. Schewiakoff W. 1893 Über einen neuen bakterienähnlichen Organismus des Süβwassers Heidelberg: Habilitationsschrift;
    [Google Scholar]
  39. Skuja H. 1948; Taxonomie des Phytoplanktons einiger Seen in Uppland. Symb Bot Ups 9:1–399
    [Google Scholar]
  40. Starr M. P., Skerman V. D. B. 1965; Bacterial diversity: the natural history of selected morphologically unusual bacteria. Anrn Rev Microbiol 19:420–422
    [Google Scholar]
  41. Teske A., Alm E., Regan J. M., Toze S., Rittmann B. E., Stahl D. A. 1994; Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacterial 176:6623–6630
    [Google Scholar]
  42. Ward D. M., Bateson M. M., Weller R., Ruff-Roberts A. L. 1992; Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microb Ecol 12:219–286
    [Google Scholar]
  43. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-9-2341
Loading
/content/journal/micro/10.1099/00221287-142-9-2341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error