Flux Distributions in Anaerobic, Glucose-Limited Continuous Cultures of Saccharomyces Cerevisiae Nissen, Torben L. and Schulze, Ulrik and Nielsen, Jens and Villadsen, John,, 143, 203-218 (1997), doi = https://doi.org/10.1099/00221287-143-1-203, publicationName = Microbiology Society, issn = 1350-0872, abstract= A stoichiometric model describing the anaerobic metabolism of Saccharomyces cerevisiae during growth on a defined medium was derived. The model was used to calculate intracellular fluxes based on measurements of the uptake of substrates from the medium, the secretion of products from the cells, and of the rate of biomass formation. Furthermore, measurements of the biomass composition and of the activity of key enzymes were used in the calculations. The stoichiometric network consists of 37 pathway reactions involving 43 compounds of which 13 were measured (acetate, CO2, ethanol, glucose, glycerol, NH+ 4, pyruvate, succinate, carbohydrates, DNA, lipids, proteins and RNA). The model was used to calculate the production rates of malate and fumarate and the ethanol measurement was used to validate the model. All rate measurements were performed on glucose-limited continuous cultures in a high-performance bioreactor. Carbon balances closed within 98%. The calculations comprised flux distributions at specific growth rates of 0.10 and 0.30 h−1. The fluxes through reactions located around important branch points of the metabolism were compared, i.e. the split between the pentose phosphate and the Embden-Meyerhoff-Parnas pathways. Also the model was used to show the probable existence of a redox shunt across the inner mitochondrial membrane consisting of the reactions catalysed by the mitochondrial and the cytosolic alcohol dehydrogenase. Finally it was concluded that cytosolic isocitrate dehydrogenase is probably not present during growth on glucose. The importance of basing the flux analysis on accurate measurements was demonstrated through a sensitivity analysis. It was found that the accuracy of the measurements of CO2, ethanol, glucose, glycerol and protein was critical for the correct calculation of the flux distribution., language=, type=