1887

Abstract

Summary: The nucleotide sequence of the chromosomally encoded type II restriction/modification system from subsp. UC503 was completed. The restriction endonuclease (ENase) has previously been shown to specifically recognize 5’ CCNGG 3’ sites, cleaving after the second cytosine and the degenerate central base. The ENase gene ( 862 bp) was located between, and co-directionally transcribed with, two formerly characterized 5-methylcytosine methyltransferase genes, which encode proteins that independently confer protection against digestion. codes for a protein of 272 amino acids with a predicted molecular mass of 31470 Da, which agrees favourably with a previously estimated molecular mass of 34 kDa for this enzyme. The deduced sequence of this protein did not show any significant homology with known protein sequences, including the isoschizomeric ENase from The ENase gene was cloned and expressed in and however, no restriction of phage was observed, suggesting that expression of the ENase gene may be repressed, or that the appropriate expression signals may be absent in the cloned constructs. The ability of to cleave non-canonically modified 5’ CCNGG 3’ sequences suggested that some sites may require complex modifications to fully impair digestion by this enzyme.

Funding
This study was supported by the:
  • European Community BRIDGE (Award BIOT-CT91-0263[SSMA])
  • BIOTECH (Award BIO2-CT94-3055)
  • Food Sub-Programmes of the Operational Programme for Industrial Development, which is administered by the Irish Department of Agriculture Food and Forestry
  • National and European Union funds
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-7-2277
1997-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/7/mic-143-7-2277.html?itemId=/content/journal/micro/10.1099/00221287-143-7-2277&mimeType=html&fmt=ahah

References

  1. Aggarwal A. K. 1995; Structure and function of restriction endonucleases. Curr Opin Struct Biol 5:11–19
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  3. Anderson D. G., McKay L. L. 1983; Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552
    [Google Scholar]
  4. Anderson J. E. 1993; Restriction endonucleases and modification methylases. Curr Opin Struct Biol 3:24–30
    [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. S., Betlach M. C., Heynecker H., L, Boyer H. W., Crosa J. H., Falkow J. S. 1977; Construction and characterisation of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  6. Costello V. 1988 Characterization of bacteriophage–host interactions in Streptococcus cremoris UC503 and related streptococci PhD thesis National University of Ireland: Cork;
    [Google Scholar]
  7. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. 1978; Molecular basis of substitution hotspots in Escherichia coli . Nature 274:775–780
    [Google Scholar]
  8. Davis R. 1992 Development of in vitro gene transfer in Lactobacillus species and restriction–modification in Lacto-coccus: biochemical and genetic analysis of the ScrFl system PhD thesis National University of Ireland: Cork;
    [Google Scholar]
  9. Davis R., van der Lelie D., Mercenier A., Daly C., Fitzgerald G. F. 1993; ScrFl restriction–modification system of Lactococcus lactis subsp cremoris UC503: cloning and characterisation of two ScrFl methylase genes. Appl Environ Microbiol 59:777–785
    [Google Scholar]
  10. Fitzgerald G. F., Daly C., Brown L. R., Gingeras T. R. 1982; ScrFl: a new sequence-specific endonuclease from Streptococcus cremoris . Nucleic Acids Res 10:8171–8179
    [Google Scholar]
  11. Garvey P., van Sinderen D., Twomey D. P., Hill C., Fitzgerald G. F. 1995; Molecular genetics of bacteriophage and natural phage defence systems in the genus Lactococcus . Int Dairy J 5:905–947
    [Google Scholar]
  12. Gasson M. J. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast curing. J Bacteriol 154:1–9
    [Google Scholar]
  13. van de Guchte M., Venema G. 1989; Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol 55:224–228
    [Google Scholar]
  14. van de Guchte M., Kok J., Venema G. 1992; Gene expression in Lactococcus lactis . FEMS Microbiol Rev 88:73–92
    [Google Scholar]
  15. Hayes F., Daly C., Fitzgerald G. F. 1990; Identification of the minimal replicon of Lactococcus lactis subsp. lactis UC317 plasmid pCI305. Appl Environ Microbiol 56:202–209
    [Google Scholar]
  16. Hill C. 1993; Bacteriophage and bacteriophage resistance in lactic acid bacteria. FEMS Microbiol Rev 12:87–108
    [Google Scholar]
  17. Hill C., Miller L. A., Klaenhammer T. R. 1991; In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J Bacteriol 173:4363–4370
    [Google Scholar]
  18. Holo H., Nes F. 1989; High frequency transformation by electroporation of L. lactis ssp. cremoris strains grown in glycine in osmotically stable media. Appl Environ Microbiol 55:3119–3123
    [Google Scholar]
  19. Karyagina A., Lunin V. G., Degtyarenko K. N., Uvarov V. Y. 8t Nikolskaya, 1.1 1993; Analysis of the nucleotide sequence and derived amino acid sequence of the SsoII restriction endonuclease and methyltransferase. Gene 124:13–19
    [Google Scholar]
  20. Klaenhammer T. R., Fitzgerald G. F. 1994 Bacteriophages and bacteriophage resistance. . In Genetics and Biotechnology of Lactic Acid Bacteria , pp. 106–168 . Edited by Gasson M. J., de Vos W. London: Chapman & Hall;
    [Google Scholar]
  21. Klimasauskas S., Timinskas A., Menkevicius S., Butkiene D., Butkus V., Janulaitis A. 1989; Sequence motifs characteristic of DNA [cytosine-N4] methyltransferases: similarity to adenine and cytosine-C5 DNA methylases. Nucleic Acids Res 17:9823–9832
    [Google Scholar]
  22. Kubareva E. A., Petrauskene O. V., Karyagina A. S., Tashlitsky V. N., Nikolskaya, 1.1. & Gromova E. S. 1992; Cleavage of synthetic substrates containing non-nucleotide inserts by restriction endonucleases. Change in cleavage specificity of endonuclease SsoII. Nucleic Acids Res 20:4533–4538
    [Google Scholar]
  23. Kumar S., Cheng X., Klimasauskas S., Mi S., Pósfai J. R., Roberts J., Wilson G. G. 1994; The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 22:1–10
    [Google Scholar]
  24. Lucey M., Daly C., Fitzgerald G. F. 1992; Cell surface characteristics of Lactococcus lactis harbouring pCI528, a 46 kb plasmid encoding inhibition of bacteriophage adsorption. J Gen Microbiol 138:2137–2143
    [Google Scholar]
  25. McClelland M., Nelson M., Raschke E. 1994; Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22:3640–3659
    [Google Scholar]
  26. Moineau S., Walker S. A., Vedamuthu E. R., Vandenbergh P. A. 1995; Cloning and sequencing of LlaDCHI restriction/modification genes from Lactococcus lactis and relatedness of this system to the Streptococcus pneumoniae DpnII system. Appl Environ Microbiol 61:2193–2202
    [Google Scholar]
  27. Nelson P. S., McClelland M. 1987; The effect of site-specific modifications on restriction–modification enzymes. Nucleic Acids Res 15:219–230
    [Google Scholar]
  28. Nelson P. S., Christ C., Schildkraut I. 1984; Alteration of apparent restriction endonuclease recognition specificities by DNA methylases. Nucleic Acids Res 12:5165–5173
    [Google Scholar]
  29. Noyer-Weidner M., Trautner T. A. 1993 Methylation of DNA in prokaryotes. . In DNA Methylation: Molecular Biology and Biological Significance , pp. 39–108 . Edited by Jost J. P., Saluz H. P. Basel: Birkhäuser Verlag;
    [Google Scholar]
  30. Nyengaard N. R., Falkenberg-Klok J., Josephsen J. 1996; Cloning and analysis of the restriction–modification system LlaBI, a bacteriophage resistance system from Lactococcus lactis subsp. cremoris W56. Appl Environ Microbiol 62:3494–3498
    [Google Scholar]
  31. O’Sullivan D. J., Zagula K., Klaenhammer T. R. 1995; In vivo restriction by LlaI is encoded by three genes, arranged in an operon with llaIM, on the conjugative Lactococcus plasmid pTR2030. J Bacteriol 177:134–143
    [Google Scholar]
  32. Pósfai J., Bhagwat A. S., Pósfai G., Roberts R. J. 1989; Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res 17:2421–2435
    [Google Scholar]
  33. Roberts R. J., Halford S. E. 1993 Type II restriction endo-nucleases. . In Nucleases , 2nd edn, pp. 35–88 . Edited by Linn S. M., Lloyd R. S., Roberts R. J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., 8i Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor; NY: Cold Spring Harbor Laboratory:
    [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  36. Schleifer K. H., Kilpper-Bälz R. 1987; Molecular and chemo-taxonomic approaches to the classification of streptococci, enterococci and lactococci: a review. Syst Appl Microbiol 10:1–9
    [Google Scholar]
  37. Syzbalski W., Blumenthal R. M., Brooks J. E., Hattman S., Raleigh E. A. 1988; Nomenclature for bacterial genes coding for class-II restriction endonucleases and modification methyltransferases. Gene 74:279–280
    [Google Scholar]
  38. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophage. Appl Microbiol 29:807–813
    [Google Scholar]
  39. Timiniskas A., Butkus V., Janulaitis A. 1995; Sequence motifs characteristic of DNA [cytosine-N4] and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases. Gene 157:3–11
    [Google Scholar]
  40. Twomey D. P. 1996 Molecular characterization of the ScrFI restriction/modification system from Lactococcus lactis ssp. cremoris PhD thesis National University of Ireland: Cork;
    [Google Scholar]
  41. Twomey D. P., Davis R., Daly C., Fitzgerald G. F. 1993; Sequence of the gene encoding a second ScrFI m5C methyltransferase of Lactococcus lactis . Gene 136:205–209
    [Google Scholar]
  42. Wilson G. G. 1992; Amino acid sequence arrangements of DNA-methyltransferases. Methods Enzymol 216:259–279
    [Google Scholar]
  43. Wilson G. G., Murray N. E. 1991; Restriction and modification systems. Annu Rev Genet 25:585–627
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-7-2277
Loading
/content/journal/micro/10.1099/00221287-143-7-2277
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error