1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-1-13
1998-01-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/1/mic-144-1-13.html?itemId=/content/journal/micro/10.1099/00221287-144-1-13&mimeType=html&fmt=ahah

References

  1. Bell W., Klaassen P., Ohnacker M., Boller T., Herweijer M., Schoppink P., van der Zee P., Wiemken A. 1992; Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 209:951–959
    [Google Scholar]
  2. Blom J., Teixeira de Mattos J. M., Grivell L. A. 1997; Carbon-source control of respiratory function in Saccharomyces cerevisiae . In European Research Conferences: Control of Metabolic Flux, Approaches for Understanding the Control of Flux in Yeasts and Fungi, Giens, France, 14–18 June 1997 (programme and abstracts), p. 27.
    [Google Scholar]
  3. Busturia A., Lagunas R. 1986; Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae . J Gen Microbiol 132:379–385
    [Google Scholar]
  4. Caponigro G., Parker R. 1996; Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae . Microbiol Rev 60:233–249
    [Google Scholar]
  5. Cassart J. -P., Georis I., Östling J., Ronne H., Vandenhaute J. 1995; The MIG1 repressor from Kluyveromyces lactis: cloning, sequencing and functional analysis in Saccharomyces cerevisiae . FEBS Lett 371:191–194
    [Google Scholar]
  6. Celenza J. L., Marshall-Carlson L., Carlson M. 1988; The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc Natl Acad Sci USA 85:2130–2134
    [Google Scholar]
  7. Cereghino G. P., Scheffler I. E. 1996; Genetic analysis of glucose regulation in Saccharomyces cerevisiae: control of transcription versus mRNA turnover. EMBO J 15:363–374
    [Google Scholar]
  8. Crawford M. J., Sherman D. R., Goldberg D. E. 1995; Regulation of Saccharomyces cerevisiae flavohemoglobin gene expression. J Biol Chem 270:6991–6996
    [Google Scholar]
  9. Deckert J., Perini R., Balasubramanian B., Zitomer R. S. 1995; Multiple elements and auto-repression regulate Rox1, a repressor of hypoxic genes in Saccharomyces cerevisiae . Genetics 139:1149–1158
    [Google Scholar]
  10. DeJuan C., Lagunas R. 1986; Inactivation of the galactose transport system in Saccharomyces cerevisiae . FEBS Lett 207:258–261
    [Google Scholar]
  11. de Deken R. H. 1966; The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156
    [Google Scholar]
  12. DeVit M., Johnston M. 1996; Analysis of the regulation of the Mig1 glucose repressor. In Yeast Genetics and Molecular Biology, Madison, WI, USA, 6–11 August 1996 (programme and abstracts), p. 282.
    [Google Scholar]
  13. Dowzer C. E. A., Kelly J. M. 1991; Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans . Mol Cell Biol 11:5701–5709
    [Google Scholar]
  14. Entian K. -D., Barnett J. A. 1992; Regulation of sugar utilization by Saccharomyces cerevisiae . Trends Biochem Sci 17:506–510
    [Google Scholar]
  15. Entian K. -D., Schüller H. -J. 1997; Glucose repression (carbon catabolite repression) in yeast. In Yeast Sugar Metabolism pp 409–434 Edited by Zimmermann F. K., Entian K. -D. Lancester, Basel: Technomic;
    [Google Scholar]
  16. Federoff H. J., Ecclesall T. R., Marmur J. 1983; Carbon catabolite repression of maltase synthesis in Saccharomyces cerevisiae . J Bacteriol 156:301–307
    [Google Scholar]
  17. Fiechter A., Fuhrmann G. F., Käppeli O. 1981; Regulation of glucose metabolism in growing yeast cells. Adv Microb Physiol 22:123–183
    [Google Scholar]
  18. Forsburg S. L., Guarente L. 1989; Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 3:1166–1178
    [Google Scholar]
  19. François J., Neves M. -J., Hers H. -G. 1991; The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeast 7:575–587
    [Google Scholar]
  20. Frederick D. L., Tatchell K. 1996; The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth. Mol Cell Biol 16:2922–2931
    [Google Scholar]
  21. Fu L., Bounelis P., Dey N., Browne B. L., Marchase R. B., Bedwell D. M. 1995; The posttranslational modification of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae . J Bacteriol 177:3087–3094
    [Google Scholar]
  22. Gallie D. R. 1996; The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 5:2108–2116
    [Google Scholar]
  23. Gancedo J. M. 1992; Carbon catabolite repression in yeast. Eur J Biochem 206:297–313
    [Google Scholar]
  24. Gancedo C., Serrano R. 1989; Energy-yielding metabolism. In The Yeasts vol 3 pp 205–259 Edited by Rose A. H., Harrison J. S. New York: Academic Press;
    [Google Scholar]
  25. González M. I., Stucka R., Blázquez M. A., Feldmann H., Gancedo C. 1992; Molecular cloning of CIF1, a yeast gene necessary for growth on glucose. Yeast 8:183–192
    [Google Scholar]
  26. Görts C. P. M. 1969; Effect of glucose on the activity and the kinetics of the maltose-uptake system and of α-glucosidase in Saccharomyces cerevisiae . Biochim Biophys Acta 184:299–305
    [Google Scholar]
  27. Hardie D. G., Carling D. 1997; The AMP-activated protein kinase. Fuel gauge of the mammalian cell?. Eur J Biochem 246:259–273
    [Google Scholar]
  28. Hedges D., Proft M., Entian K. -D. 1995; CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae . Mol Cell Biol 15:1915–1922
    [Google Scholar]
  29. Herrero P., Galíndez J., Ruiz N., Martínez-Campa C., Moreno F. 1995; Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes. Yeast 11:137–144
    [Google Scholar]
  30. Hodge M. R., Singh K., Cumsky M. G. 1990; Upstream activation and repression elements control transcription of the yeast COX5b gene. Mol Cell Biol 10:5510–5520
    [Google Scholar]
  31. Hohmann S. 1991; Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae . J Bacteriol 173:7963–7969
    [Google Scholar]
  32. Hohmann S. 1993; Characterisation of PDC2, a gene necessary for high level expression of pyruvate decarboxylase structural genes in Saccharomyces cerevisiae . Mol Gen Genet 241:657–666
    [Google Scholar]
  33. Hohmann S., Huse K., Valentin E., Mbonyi K., Thevelein J. M., Zimmermann F. K. 1992; Glucose-induced regulatory defects in the Saccharomyces cerevisiae byp1 growth initiation mutant and identification of MIG1 as a partial suppressor. J Bacteriol 174:4183–4188
    [Google Scholar]
  34. Holzer H. 1976; Catabolite inactivation in yeast. Trends Biochem Sci 1:178–181
    [Google Scholar]
  35. Horak J., Wolf D. H. 1997; Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol 179:1541–1549
    [Google Scholar]
  36. Hu Z., Nehlin J. O., Ronne H., Michels C. A. 1995; MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae . Curr Genet 28:258–266
    [Google Scholar]
  37. Jiang R., Carlson M. 1996; Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev 10:3105–3115
    [Google Scholar]
  38. Johnston M. 1987; A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae . Microbiol Rev 51:458–476
    [Google Scholar]
  39. Johnston M., Carlson M. 1992; Regulation of carbon and phosphate utilization. In The Molecular and Cellular Biology of the Yeast Saccharomyces pp 193–281 Edited by Jones E. W., Pringle J. R., Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Käppeli O. 1986; Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microbiol Physiol 28:181–209
    [Google Scholar]
  41. Keleher C. A., Redd M. J., Schultz J., Carlson M., Johnson A. D. 1992; Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709–719
    [Google Scholar]
  42. Klein C. J. L., Olsson, L, Rønnow B., Mikkelsen J. D., Nielsen J. 1996; Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae . Appl Environ Microbiol 62:4441–4449
    [Google Scholar]
  43. Ko C. H., Liang H., Gaber R. F. 1993; Roles of multiple glucose transporters in Saccharomyces cerevisiae . Mol Cell Biol 13:638–648
    [Google Scholar]
  44. Kopp M., Müller H., Holzer H. 1993; Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae . J Biol Chem 268:4766–4774
    [Google Scholar]
  45. Kratzer S., Schüller H. -J. 1997; Transcriptional control of the yeast acetyl-CoA synthetase gene ACS1 by the activators CAT8 and ADR1 and the repressor UME6 . Yeast 13: (Special issue) S98
    [Google Scholar]
  46. Kruckeberg A. L. 1996; The hexose transporter family of Saccharomyces cerevisiae . Arch Microbiol 166:283–292
    [Google Scholar]
  47. Lazo P. S., Ochoa A. G., Gascón S. 1978; α-Galactosidase (melibiase) from Saccharomyces carlsbergensis: structural and kinetic properties. Arch Biochem Biophys 191:316–324
    [Google Scholar]
  48. Liang H., Gaber R. F. 1996; A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6 . Mol Biol Cell 7:1953–1966
    [Google Scholar]
  49. Lohr D., Venkov P., Zlatanova J. 1995; Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J 9:777–787
    [Google Scholar]
  50. Lombardo A., Cereghino G. P., Scheffler I. E. 1992; Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae . Mol Cell Biol 12:2941–2948
    [Google Scholar]
  51. Lundin M., Nehlin J. O., Ronne H. 1994; Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol 14:1979–1985
    [Google Scholar]
  52. Lutfiyya L. L., Johnston M. 1996; Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol Cell Biol 16:4790–4797
    [Google Scholar]
  53. Luyten K., Albertyn J., Skibbe W. F., Prior B. A., Ramos J., Thevelein J. M., Hohmann S. 1995; Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371
    [Google Scholar]
  54. Maarse A. C., de Haan M., Bout A., Grivell L. A. 1988; Demarcation of a sequence involved in mediating catabolite repression of a gene for the 11 kDa subunit VIII of ubiquinol-cytochrome c oxidoreductase in Saccharomyces cerevisiae . Nucleic Acids Res 16:5797–5811
    [Google Scholar]
  55. Martínez-Pastor M. T., Marchler G., Schuller C., Marchler-Bauer A., Ruis H., Estruch F. 1996; The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235
    [Google Scholar]
  56. Mercado J. J., Gancedo J. M. 1992; Regulatory regions in the yeast FBP1 and PCK1 genes. FEBS Lett 311:110–114
    [Google Scholar]
  57. Mercado J. J., Vincent O., Gancedo J. M. 1991; Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1 . FEBS Lett 291:97–100
    [Google Scholar]
  58. Mercado J. J., Smith R., Sagliocco F. A., Brown A. J. P., Gancedo J. M. 1994; The levels of yeast gluconeogenic mRNAs respond to environmental factors. Eur J Biochem 224:473–481
    [Google Scholar]
  59. Mwesigye P. K., Barford J. P. 1996; Mechanism of sucrose utilization by Saccharomyces cerevisiae . J Gen Appl Microbiol 42:297–306
    [Google Scholar]
  60. Mylin L. M., Johnston M., Hoper J. E. 1990; Phosphorylated forms of GAL4 are correlated with ability to activate transcription. Mol Cell Biol 10:4623–4629
    [Google Scholar]
  61. Naumov G. I., Naumova E. S., Turakainen H., Korhola M. 1996; Identification of the α-galactosidase MEL genes in some populations of Saccharomyces cerevisiae: a new gene MEL11 . Genet Res 67:101–108
    [Google Scholar]
  62. Nehlin J. O., Ronne H. 1990; Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. EMBO J 9:2891–2898
    [Google Scholar]
  63. Nehlin J. O., Carlberg M., Ronne H. 1991; Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J 10:3373–3377
    [Google Scholar]
  64. Neigeborn L., Carlson M. 1987; Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115:247–253
    [Google Scholar]
  65. Nwaka S., Kopp M., Holzer H. 1995; Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae . J Biol Chem 270:10193–10198
    [Google Scholar]
  66. Oechsner U., Hermann H., Zollner A., Haid A., Bandlow W. 1992; Expression of yeast cytochrome c1 is controlled at the transcriptional level by glucose, oxygen and haem. Mol Gen Genet 232:447–459
    [Google Scholar]
  67. Oh D., Hopper J. E. 1990; Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible. Mol Cell Biol 10:1415–1422
    [Google Scholar]
  68. Olsson L., Larsen M. E., Rønnow B., Mikkelsen J. D., Nielsen J. 1997; Silencing MIG1 in Saccharomyces cerevisiae: effects of antisense MIG1 expression and MIG1 gene disruption. Appl Environ Microbiol 63:2366–2371
    [Google Scholar]
  69. Östling J., Carlberg M., Ronne H. 1996; Functional domains in the Mig1 repressor. Mol Cell Biol 16:753–761
    [Google Scholar]
  70. Özcan S., Johnston M. 1995; Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15:1564–1572
    [Google Scholar]
  71. Özcan S., Johnston M. 1996; Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose. Mol Cell Biol 16:5536–5545
    [Google Scholar]
  72. Özcan S., Leong T., Johnston M. 1996; Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol Cell Biol 16:6419–6426
    [Google Scholar]
  73. Özcan S., Vallier L. G., Flick J. S., Carlson M., Johnston M. 1997; Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose. Yeast 13:127–137
    [Google Scholar]
  74. Panek A. D. 1991; Storage carbohydrates. In The Yeasts vol 4 pp 655–677 Edited by Rose A. H., Harrison J. S. New York: Academic Press;
    [Google Scholar]
  75. Parets Soler A., Casanova M., Gozalbo D., Sentandreu R. 1987; Differential translational efficiency of the mRNAs isolated from derepressed and glucose repressed Saccharomyces cerevisiae . J Gen Microbiol 133:1471–1480
    [Google Scholar]
  76. Petit T., François J. 1994; Accumulation of trehalose in Saccharomyces cerevisiae growing on maltose is dependent on the TPS1 gene encoding the UDPglucose-linked trehalose synthase. FEBS Lett 355:309–313
    [Google Scholar]
  77. Pinkham J. L., Guarente L. 1985; Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae . Mol Cell Biol 5:3410–3416
    [Google Scholar]
  78. Post-Beittenmiller M. A., Hamilton R. W., Hopper J. E. 1984; Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae . Mol Cell Biol 4:1238–1245
    [Google Scholar]
  79. Randez-Gil F., Bojunga N., Proft M., Entian K. D. 1997; Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol Cell Biol 17:2502–2510
    [Google Scholar]
  80. Reifenberger E., Freidel K., Ciriacy M. 1995; Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol Microbiol 16:157–167
    [Google Scholar]
  81. Riballo E., Herweijer M., Wolf D. H., Lagunas R. 1995; Catabolite inactivation of the yeast maltose transporter occurs in the vacuole after internalization by endocytosis. J Bacteriol 177:5622–5627
    [Google Scholar]
  82. Ronne H. 1995; Glucose repression in fungi. Trends Genet 11:12–17
    [Google Scholar]
  83. Rosenkrantz M., Kell C. S., Pennell E. A., Devenish L. J. 1994; The HAP2,3,4 transcriptional activator is required for derepression of the yeast citrate synthase gene, CIT1 . Mol Microbiol 13:119–131
    [Google Scholar]
  84. Sadowski I., Costa C., Dhanawansa R. 1996; Phosphorylation of Gal4p at a single C-terminal residue is necessary for galactose-inducible transcription. Mol Cell Biol 16:4879–4887
    [Google Scholar]
  85. Santos E., Rodríguez L., Elorza M. V., Sentandreu R. 1982; Uptake of sucrose by Saccharomyces cerevisiae . Arch Biochem Biophys 216:652–660
    [Google Scholar]
  86. Sanz P., Nieto A., Prieto J. A. 1996; Glucose repression may involve processes with different sugar kinase requirements. J Bacteriol 178:4721–4723
    [Google Scholar]
  87. Schlaepfer I. R., Mattoon J. R., Bajszár G. 1994; The sequence and potential regulatory elements of the HEM2 promoter of Saccharomyces cerevisiae . Yeast 10:227–229
    [Google Scholar]
  88. Schmitt A. P., McEntee K. 1996; Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae . Proc Natl Acad Sci USA 93:5777–5782
    [Google Scholar]
  89. Schmitt H. D., Ciriacy M., Zimmermann F. K. 1983; The synthesis of yeast pyruvate decarboxylase is regulated by large variations in the messenger RNA level. Mol Gen Genet 192:247–252
    [Google Scholar]
  90. Schork S. M., Bee G., Thumm M., Wolf D. H. 1994; Catabolite inactivation of fructose-1,6-bisphosphatase in yeast is mediated by the proteasome. FEBS Lett 349:270–274
    [Google Scholar]
  91. Schöler A., Schüller H. -J. 1993; Structure and regulation of the isocitrate lyase gene ICL1 from the yeast Saccharomyces cerevisiae . Curr Genet 23:375–381
    [Google Scholar]
  92. Schüller H. -J., Entian K. -D. 1991; Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes. J Bacteriol 173:2045–2052
    [Google Scholar]
  93. Sierkstra L. N., Nouwen N. P., Verbakel J. M. A., Verrips C. T. 1992; Analysis of glucose repression in Saccharomyces cerevisiae by pulsing glucose to a galactose-limited continuous culture. Yeast 8:1077–1087
    [Google Scholar]
  94. Siro M. -R., Lövgren T. 1978; On the properties of α-glucosidase and the binding of glucose to the enzyme. Acta Chem Scand Ser B Org Chem Biochem 32:447–451
    [Google Scholar]
  95. Sumner-Smith M., Bozzato R. P., Skipper N., Davies R. W., Hopper J. E. 1985; Analysis of the inducible MEL1 gene of Saccharomyces carlsbergensis and its secreted product, α-galactosidase (melibiase). Gene 36:333–340
    [Google Scholar]
  96. Thevelein J. M. 1994; Signal transduction in yeast. Yeast 10:1753–1790
    [Google Scholar]
  97. Thevelein J. M., Hohmann S. 1995; Trehalose synthase: guard to the gate of glycolysis in yeast?. Trends Biochem Sci 20:3–10
    [Google Scholar]
  98. Treitel M. A., Carlson M. 1995; Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci USA 92:3132–3136
    [Google Scholar]
  99. Trumbly R. J. 1992; Glucose repression in the yeast Saccharomyces cerevisiae . Mol Microbiol 6:15–21
    [Google Scholar]
  100. Tu J., Carlson M. 1995; REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae . EMBO J 14:5939–5946
    [Google Scholar]
  101. Vallier G. V., Carlson M. 1994; Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae . Genetics 137:49–54
    [Google Scholar]
  102. Walsh M. C., Scholte M., Valkier J., Smits H. P., van Dam K. 1996; Glucose sensing and signalling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family. J Bacteriol 178:2593–2597
    [Google Scholar]
  103. Wanke V., Vavassori M., Thevelein J. M., Tortora P., Vanoni M. 1997; Regulation of maltose utilization in Saccharomyces cerevisiae by genes of the RAS/protein kinase A pathway. FEBS Lett 402:251–255
    [Google Scholar]
  104. Wendell D. L., Bisson L. F. 1994; Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally. J Bacteriol 176:3730–3737
    [Google Scholar]
  105. Wilson W. A., Hawley S. A., Hardie D. G. 1996; Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP: ATP ratio. Curr Biol 6:1426–1434
    [Google Scholar]
  106. de Winde J. H., Grivell L. A. 1993; Global regulation of mitochondrial biogenesis in Saccharomyces cerevisiae . Progr Nucleic Acid Res Mol Biol 46:51–91
    [Google Scholar]
  107. de Winde J. H., Crauwels M., Hohmann S., Thevelein J. M., Winderickx J. 1996; Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur J Biochem 241:633–643
    [Google Scholar]
  108. Yano K. -I., Fukasawa T. 1997; Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae . Proc Natl Acad Sci USA 94:1721–1726
    [Google Scholar]
  109. Yin Z., Smith R. J., Brown A. J. P. 1996; Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose. Mol Microbiol 20:751–764
    [Google Scholar]
  110. Zenke F. T., Engels R., Vollenbroich V., Meyer J., Hollenberg C. P., Breunig K. D. 1996; Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science 272:1662–1665
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-1-13
Loading
/content/journal/micro/10.1099/00221287-144-1-13
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error