1887

Abstract

Summary: Phospholipase C (PLC) enzymes are essential in regulating several important cellular functions in eukaryotes, including yeasts. In this study, PCR was used to identify a gene encoding PLC activity in , using oligonucleotide primers complementary to sequences encoding highly conserved amino acid regions within the X domains of previously characterized eukaryotic phospholipase C genes. The nucleotide sequence of the gene, (2997 bp), was determined from a recombinant clone containing 132 A genomic DNA; it encoded a polypeptide of 1099 amino acids with a predicted molecular mass of 124.6 kDa. The deduced amino acid sequence of this polypeptide (CAPLC1) exhibited many of the features common to previously characterized PLCs, including specific X and Y catalytic domains. The CAPLC1 protein also exhibited several unique features, including a novel stretch of 18-19 amino acid residues within the X domain and an unusually long N-terminus which did not contain a recognizable EF-hand Ca-binding domain. An overall amino acid homology of more than 27% with PLCs previously characterized from and suggested that the CAPLC1 protein is a δ-form of phosphoinositide-specific PLC (PI-PLC). PLC activity was detected in cell-free extracts of both yeast and hyphal forms of 132A following 7 h and 24 h growth using the PLC-specific substrate -nitrophenylphosphorylcholine (-NPPC). In addition, mRNA was detected by reverse transcriptase PCR in both yeast and hyphal forms of 132A at the same time intervals. Expression of CAPLC1 activity was also detected in extracts of DH5x harbouring plasmids which contained portions of the gene lacking sequences encoding part of the N-terminus. Southern hybridization and PCR analyses revealed that all and isolates examined possessed sequences homologous to Sequences related to were detected in some but not all isolates of and tested, but not in the isolates of and examined. This paper reports the first description of the cloning and sequencing of a gene from a pathogenic yeast species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-1-55
1998-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/1/mic-144-1-55.html?itemId=/content/journal/micro/10.1099/00221287-144-1-55&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Bairoch A., Cox J. A. 1990; EF-hand motifs in inositol phospholipid-specific phospholipase C. FEBS Lett 269:454–456
    [Google Scholar]
  3. Banno Y., Yamada T., Nozawa Y. 1985; Secreted phospholipases of the dimorphic fungus, Candida albicans; separation of three enzymes and some biological properties. J Med Vet Mycol 23:47–54
    [Google Scholar]
  4. Barrett-Bee K., Hayes Y., Wilson R. G., Ryley J. F. 1985; A comparison of phospholipase activity, cellular adherence and pathogenicity of yeasts. J Gen Microbiol 131:1217–1221
    [Google Scholar]
  5. Bayer M. H., Bayer M. E. 1985; Phosphoglycerides and phospholipase C in membrane fractions of Escherichia coli B. J Bacteriol 162:50–54
    [Google Scholar]
  6. Berridge M. 1993; Inositol trisphosphate and calcium signalling. Nature 361:315–325
    [Google Scholar]
  7. Brown A. J. P., Lithgow G. J. 1987; The structure and expression of nuclear genes in Saccharomyces cerevisiae. . In Gene Structure in Eukaryotic Microbes pp 1–26 Edited by Kinghorn J. R. Oxford: IRL Press;
    [Google Scholar]
  8. Brown D. H. Jr, Slobodlin I. V., Kumamoto C. A. 1996; Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Mol Gen Genet 251:75–80
    [Google Scholar]
  9. Cheng H. -F., Jiang M. -J., Chen C. -L., Liu S. -M., Wong L. -P., Lomasney J. W., King K. 1995; Cloning and identification of amino acid residues of human phospholipase Cδ1 essential for catalysis. J Biol Chem 270:5495–5505
    [Google Scholar]
  10. Cifuentes M. E., Honkanen L., Rebecchi M. J. 1993; Proteolytic fragments of phosphoinositide-specific phospholipase C-δ1 . J Biol Chem 268:11586–11593
    [Google Scholar]
  11. Coleman D. C., Sullivan D. J., Bennett D. E., Moran G. P., Barry H. J., Shanley D. B. 1997; Candidiasis: the emergence of a novel species, Candida dubliniensis. . AIDS 11:557–567
    [Google Scholar]
  12. Colthurst D. R., Schauer B. S., Hates M. V., Tuite M. F. 1992; Elongation factor 3 (EF-3) from Candida albicans shows both structural and functional similarity to EF-3 from Saccharomyces cerevisiae. . Mol Microbiol 6:1025–1033
    [Google Scholar]
  13. Costa A. L., Costa C., Misefari A., Amato A. 1968; On the enzymatic activity of certain fungi. VII. Phosphatidase activity on media containing sheep’s blood of pathogenic strains of Candida albicans . Atti Soc Peloritana Sci Fis Mat Nat XIV:93–101
    [Google Scholar]
  14. Drayer A. L., van Haastert P. J. M. 1992; Molecular cloning and expression of a phosphoinositide-specific phospholipase C of Dictyostelium discoideum. . J Biol Chem 267:18387–18392
    [Google Scholar]
  15. Ellis M. V., Carne A., Katan M. 1993; Structural requirements of phosphatidylinositol-specific phospholipase C delta 1 for enzyme activity. Eur J Biochem 213:339–347
    [Google Scholar]
  16. Emini E. A., Hughes J. V., Perlow D. S., Bolger J. 1985; Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836–839
    [Google Scholar]
  17. Essen L. -O., Perisic O., Cheung R., Katan M., Williams R. L. 1996; Crystal structure of a mammalian phosphoinositide-specific phospholipase Cδ. Nature 380:595–602
    [Google Scholar]
  18. Fankhauser H., Schweingruber A. M., Edenharter E., Schweingruber M. E. 1995; Growth of a mutant defective in a putative phosphoinositide-specific phospholipase C of Schizo-saccharomyces pombe is restored by low concentrations of phosphate and inositol. Curr Genet 28:199–203
    [Google Scholar]
  19. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  20. Frischauf A. M., Lehrach H., Poustka A., Murray N. 1983; Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170:827–842
    [Google Scholar]
  21. Fu Y., Ibrahim A. S., Fonzi W., Zhou X., Ramos C. F., Ghannoum M. A. 1997; Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans . Microbiology 143:331–340
    [Google Scholar]
  22. Gallagher P. J., Bennett D. E., Henman H. C., Russell R. J., Flint S. R., Shanley D. B., Coleman D. C. 1992; Reduced azole susceptibility of Candida albicans from HIV-positive patients and a derivative exhibiting colony morphology variation. J Gen Microbiol 138:1901–1911
    [Google Scholar]
  23. Genetics Computer Group 1994 Program manual for the GCG package, version 8.0, September 1994 Madison, WI: Genetics Computer Group;
    [Google Scholar]
  24. Gow N. A. R., Robbins P. W., Lester J. W., Brown A. J. P., Fonzi W. A., Chapman T., Kinsman O. S. 1994; A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans . Proc Natl Acad Sci USA 91:6216–6220
    [Google Scholar]
  25. Higgins D. G., Sharp P. M. 1988; clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  26. Hube B., Monod M., Schofield D. A., Brown A. J. P., Gow N. A. R. 1994; Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans . Mol Microbiol 14:87–99
    [Google Scholar]
  27. Ibrahim A. S., Mirbod F. S., Filler G. S., Banno Y., Cole G. T., Kitajima Y., Edwards J. E. Jr, Nozawa Y., Ghannoum M. A. 1995; Evidence implicating phospholipase as a virulence factor of Candida albicans . Infect Immun 63:1993–1998
    [Google Scholar]
  28. Ibrahim A. S., Fu Y., Fonzi W., Zhou X., Mirbod F., Nakashima S., Nozawa Y., Ghannoum M. A. 1996; Cloning, and expression of Candida albicans extracellular phospholipase B. In Abstracts of the 34th Infectious Diseases Society of America Meeting, New Orleans abstract 220
    [Google Scholar]
  29. Karplus P. A., Schulz G. E. 1985; Prediction of chain flexibility in proteins. Naturwissenschaften 72:212–213
    [Google Scholar]
  30. Kurioka S., Matsuda M. 1976; Phospholipase C assay using p-nitrophenylphosphoryl-choline together with sorbitol and its application to studying the metal and detergent requirement of the enzyme. Anal Biochem 75:281–289
    [Google Scholar]
  31. Kurtz M. B., Kelly R., Kirsch D. R. 1990; Overview of Candida physiology, pathogenicity, and new anticandidial agents. In The Genetics of Candida pp 1–19 Edited by Kirch D. R., Kelly R., Kurtz M. B. Boston: CRC Press;
    [Google Scholar]
  32. Leonis M. A., Silbert D. F. 1996; Genomic organization of the hamster phospholipase C-δ1 gene: differential loss of separate alleles of the phospholipase C-δ1 gene in two fibroblast mutants lacking phospholipase C-δ1 . Biochem Biophys Res Commun 224:382–390
    [Google Scholar]
  33. Losberger C., Ernst J. F. 1989; Sequence of the Candida albicans gene encoding actin. Nucleic Acids Res 17:9488
    [Google Scholar]
  34. Magee B. B., Koltin Y., Gorman J. A., Magee P. T. 1988; Assignment of cloned genes to the seven electrophoretically separated Candida albicans chromosomes. Mol Cell Biol 8:4721–4726
    [Google Scholar]
  35. Magee P. T., Bowdin L., Staudinger J. 1992; Comparison of molecular typing methods for Candida albicans . J Clin Microbiol 30:2674–2679
    [Google Scholar]
  36. Mason M., Lasker B., Riggsby W. S. 1987; Molecular probe for identification of medically important Candida species and Torulopsis glabrata . J Clin Microbiol 23:563–566
    [Google Scholar]
  37. Mensa-Wilmot K., Englund P. T. 1992; Glycosyl phosphatidyl-inositol-specific phospholipase C of Trypanosoma brucei: expression in Escherichia coli . Mol Biochem Parasitol 56:311–322
    [Google Scholar]
  38. Milting H., Heilmeyer L. M. Jr, Thieleczek R. 1996; Cloning of a phospholipase C-delta 1 of rabbit skeletal muscle. J Muscle Res Cell Motil 17:79–84
    [Google Scholar]
  39. Mirbod F., Banno Y., Ghannoum M. A., Ibrahim A. S., Nakashima S., Kitajima Y., Cole G. T., Nozawa Y. 1995; Purification and characterization of lysophospholipase-transacylase (h-LPTA) from a highly virulent strain of Candida albicans . Biochim Biophys Acta 1257:181–188
    [Google Scholar]
  40. Mitchell R. H. 1992; Inositol lipids in cellular signalling mechanisms. Trends Biochem Sci 17:274–276
    [Google Scholar]
  41. Moran G. P., Sullivan D. J., Henman M. C., McCreary C. E., Harrington B. J., Shanley D. B., Coleman D. C. 1997; Anti-fungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected subjects and generation of stable fluconazole-resistant derivatives in vitro. Antimicrob Agents Chemother 41:617–623
    [Google Scholar]
  42. Nakashima S., Banno Y., Watanabe T., Nakamura Y., Mizutani T., Saki H., Zhao Y., Sugimoto Y., Nozawa Y. 1995; Deletion and site-directed mutagenesis of EF-hand domain of phospholipase C-δ1: effects on its activity. Biochem Biophys Res Commun 211:364–369
    [Google Scholar]
  43. Nishizuka Y. 1992; Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614
    [Google Scholar]
  44. Perler F. B., Davis E. O., Dean G. E., Gimble F. S., Jack W. E., Neff N., Noren C. J., Thorner J., Belfort M. 1994; Protein splicing elements: inteins and exteins – a definition of terms and recommended nomenclature. Nucleic Acids Res 22:1125–1127
    [Google Scholar]
  45. Price M. F., Cawson R. A. 1977; Phospholipase activity in Candida albicans . Sabouraudia 15:179–185
    [Google Scholar]
  46. Pugh D., Cawson R. A. 1975; The cytochemical localization of phospholipase and lysophospholipase in Candida albicans . Sabouraudia 13:110–115
    [Google Scholar]
  47. Pugh D., Cawson R. A. 1977; The cytochemical localization of phospholipase in Candida albicans infecting the chick chorioallantoic membrane. Sabouraudia 15:29–35
    [Google Scholar]
  48. Rhee S. G., Choi K. D. 1992; Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 267:12393–12396
    [Google Scholar]
  49. Rhee S. G., Suh P. -G., Ryu S. -H., Lee S. Y. 1989; Studies of inositol phospholipid-specific phospholipase C. Science 244:546–550
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  52. Southern E. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517
    [Google Scholar]
  53. Suh P. -G., Ryu S. H., Moon K. H., Suh H. W., Rhee S. G. 1988; Cloning and sequence of multiple forms of phospholipase C. Cell 54:161–169
    [Google Scholar]
  54. Sullivan D. J., Westerneng T. J., Haynes K. A., Bennett D. E., Coleman D. C. 1995; Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141:1507–1521
    [Google Scholar]
  55. Sullivan D. J., Henman M. C., Moran G. P., O'Neill L. C., Bennett D. E., Shanley D. B., Coleman D. C. 1996; Molecular genetic approaches to identification, epidemiology and taxonomy of non-albicans Candida species. J Med Microbiol 44:399–408
    [Google Scholar]
  56. Sullivan D., Haynes K., Bille J., Boerlin P., Rodero L., Lloyd S., Henman M., Coleman D. 1997; Widespread geographic distribution of oral Candida dubliniensis strains in human immunodeficiency virus-infected individuals. J Clin Microbiol 35:960–964
    [Google Scholar]
  57. Swoboda R. K., Bertram G., Colthurst D. R., Tuite M. F., Gow N. A. R., Gooday G. W., Brown A. J. P. 1994; Regulation of the gene encoding translation factor 3 during growth and morphogenesis in Candida albicans . Microbiology 140:2611–2616
    [Google Scholar]
  58. Takahashi M., Banno Y., Nozawa Y. 1991; Secreted Candida albicans phospholipases: purification and characterization of two forms of lysophospholipase-transacylase. J Med Vet Mycol 29:193–204
    [Google Scholar]
  59. Vazquez J. A., Beckley A., Sobel J. D., Zervos M. J. 1991; Comparison of restriction enzyme analysis and pulsed-field gradient gel electrophoresis as typing systems for Candida albicans . J Clin Microbiol 29:962–967
    [Google Scholar]
  60. Wolf H., Modrow S., Motz M., Jameson B., Hermann G., Fortsch B. 1987; An integrated family of amino acid sequence analysis programs. Comput Appl Biosci 4:187–191
    [Google Scholar]
  61. Yagisawa H., Hirata M., Kanematsu T., Watanabe Y., Ozaki S., Sakuma K., Tanaka H., Yabuta N., Kamata H., Hirata H., Nojima H. 1994; Expression and characterization of an inositol 1,4,5-triphosphate binding domain of phosphatidylinositol-specific phospholipase C-delta 1. J Biol Chem 269:20179–20188
    [Google Scholar]
  62. Yoko-o T., Matsui Y., Yagisawa H., Nojima H., Uno I., Toh-e A. 1993; The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth. Proc Natl Acad Sci USA 90:1804–1808
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-1-55
Loading
/content/journal/micro/10.1099/00221287-144-1-55
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error