1887

Abstract

SUMMARY: A target of the anti-tuberculosis drugs isoniazid (INH) and ethionamide (ETH) has been shown to be an enoyl reductase, encoded by the inhA gene. The mabA (mycolic acid biosynthesis A) gene is located immediately upstream of inhA in Mycobacterium tuberculosis, Mycobacterium bo wis and Mycobacterium smegmatis. The MabA protein from M. tuberculosis was expressed in Escherichia coli and shown to have 3-ketoacyl reductase activity, consistent with a role in mycolic acid biosynthesis. In M. smegmatis, inhA and mabA are independently transcribed, but in M. tuberculosis and M. bowis BCG, mabA and inhA constitute a single operon. Several INH-ETH-resistant M. tuberculosis clinical isolates contain point mutations in the ribosome-binding site of mabA in the mabA-inhA operon. However, genetic dissection of this operon reveals that the INH-ETH-resistance phenotype is encoded only by hhA, and not by mabA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-10-2697
1998-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/10/mic-144-10-2697.html?itemId=/content/journal/micro/10.1099/00221287-144-10-2697&mimeType=html&fmt=ahah

References

  1. Baldock C., Rafferty J.B., Sedelnikova S.E., Baker P.J., Stuitje A.R., Slabas A.R., Hawkes T.R., Rice D.W. 1996; A mechanism of drug action revealed by structural studies of enoyl reductase.. Science 274:2107–2110
    [Google Scholar]
  2. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K.S., Wilson T., Collins D., de Lisle G., Jacobs W.R. Jr 1994; inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis.. Science 263:227–230
    [Google Scholar]
  3. Bartolome B., Jubete Y., Martinez E., De La Cruz F. 1991; Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives.. Gene 102:75–78
    [Google Scholar]
  4. Dessen A., Quemard A., Blanchard J.S., Jacobs W.R. Jr Sacchettini J.C. 1995; Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis.. Science 267:1638–1641
    [Google Scholar]
  5. Donnelly-Wu M.K., Jacobs W.R. Jr Hatfull G.F. 1993; Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria.. Mol Microbiol 7:407–417
    [Google Scholar]
  6. Fleischmann R.D., Adams M.D., White O. 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.. Science 269:496–512
    [Google Scholar]
  7. Genetics Computer Group 1995 Program Manual: Wisconsin Sequence Analysis Package, Version 8, UNIX. Madison, WI:: Genetics Computer Group, Madison.;
    [Google Scholar]
  8. Hanukoglu I., Gutfinger T. 1989; cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases.. Eur J Biochem 180:479–484
    [Google Scholar]
  9. Heym B., Honore N., Truffot-Pernot C., Banerjee A., Schurra C., Jacobs W.R. Jr van Embden J.D., Grosset J.H., Cole S.T. 1994; Implications of multidrug resistance for the future of chemotherapy of tuberculosis: a molecular study.. Lancet 344:293–298
    [Google Scholar]
  10. Jacobs W.R. Jr Kalpana G.V., Cirillo J.D., Pascopelia L., Snapper S.B., Udani R., Jones W., Barletta R.G., Bloom B.R. 1991; Genetic systems for mycobacteria.. Methods Enzymol 204:537–555
    [Google Scholar]
  11. Johnsson K., King D.S., Schultz P.G. 1995; Studies on the mechanism of action of isoniazid and ethionamide in the chemotherapy of tuberculosis.. J Amer Chem Soc 117:5009–5010
    [Google Scholar]
  12. Kapur V., Li L.L., Hamrick M.R. 11 other authors 1996; Rapid mycobacterium species assignment and unambiguous mutations associated with antimicrobial resistance in Mycobacterium tuberculosis.. Arch Pathol Lab Med 119:131–138
    [Google Scholar]
  13. Kikuchi S., Takeuchi T., Yasui M., Kusaka T., Kolattukudy P.E. 1989; A very long-chain fatty acid elongation system in Mycobacterium avium and a possible mode of action of isoniazid on the system.. Agric Biol Chem 53:1689–1698
    [Google Scholar]
  14. Klein B., Pawlowski K., Horicke-Grandpierre C., Schell J., Topfer R. 1992; Isolation and characterization of a cDNA from Cuphea lanceolata encoding a β-ketoacyl-ACP reductase.. Mol Gen Genet 233:122–128
    [Google Scholar]
  15. Mdluli K., Sherman D.R., Hickey M.J., Kreiswirth B.N., Morris S., Stover C.K., Barry C.E. 1996; Biochemical and genetic data suggest that InhA is not the primary target for activated isoniazid in Mycobacterium tuberculosis.. J Infect Dis 174:1085–1090
    [Google Scholar]
  16. Musser J.M. 1995; Antimicrobial agent resistance in mycobacteria-molecular genetic insights.. Clin Microbiol Rev 8:496–514
    [Google Scholar]
  17. Musser J.M., Kapur V., Williams D.L., Kreiswirth B.N., Vansoolingen D. 1996; Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing-restricted array of mutations associated with drug resistance.. J Infect Dis 173:196–202
    [Google Scholar]
  18. Quemard A., Sacchettini J.C., Dessen A., Vilcheze C., Bittman R., Jacobs W.R. Jr Blanchard J.S. 1995; Enzymatic characterization of the target for isoniazid in Mycobacterium tu-berculosis.. Biochemistry 34:8235–8241
    [Google Scholar]
  19. Rawlings M., Cronan J.E. Jr 1992; The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes.. J Biol Chem 267:5751–5754
    [Google Scholar]
  20. Ristow M., Mohlig M., Rifai M., Schatz H., Feldmann K., Pfeiffer A. 1995; New isoniazid/ethionamide resistance gene mutation and screening for multidrug-resistant Mycobacterium tuberculosis strains.. Lancet 346:502–503
    [Google Scholar]
  21. Rouse D.A., Li Z.M., Bai G.H., Morris S.L. 1995; Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis.. Antimicrob Agents Chemother 39:2472–2477
    [Google Scholar]
  22. Rozwarski D.A., Grant G.A., Barton D.H.R., Jacobs W.R. Jr Sacchettini J.C. 1998; Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis.. Science 278:98–102
    [Google Scholar]
  23. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  24. Shen Z.W., Byers D.M. 1996; Isolation of Vibrio harveyi acyl carrier protein and the fabG, acpP, and fabF genes involved in fatty acid biosynthesis. J Bacteriol 178:571–573
    [Google Scholar]
  25. Slabas A.R., Chase D., Nishida I. 7 other authors 1992; Molecular cloning of higher-plant 3-oxoacyl-(acyl carrier protein) reductase. Sequence identities with the nodG-gene product of the nitrogen-fixing soil bacterium Rhizobium meliloti.. Biochem J 283:321–326
    [Google Scholar]
  26. Snapper S.B., Melton R.E., Mustafa S., Kieser T., Jacobs W.R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis.. Mol Microbiol 4:1911–1919
    [Google Scholar]
  27. Snider D.E., Raviglione M., Kochi A. 1994; Global burden of tuberculosis.. In Tuberculosis: Pathogenesis, Protection, and Control pp. 3–12 Bloom B.R. Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  28. van Soolingen D., Hermans P.W., de Haas P.E., Soil D.R., van Embden J.D. 1991; Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis.. Clin Microbiol 29:2578–2586
    [Google Scholar]
  29. Studier F.W., Rosenberg A.H., Dunn J.J., Dubendorff J.W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes.. Methods Enzymol 185:60–89
    [Google Scholar]
  30. Telenti A., Honore N., Bernasconi C., March J., Ortega A., Heym B., Takiff H.E., Cole S.T. 1997; Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level.. J Clin Microbiol 35:719–723
    [Google Scholar]
  31. Toomey R.E., Wakil S.J. 1966; Studies on the mechanism of fatty acid synthesis. XV. Preparation and general properties of βketoacyl acyl carrier protein reductase from Escherichia coli.. Biochim Biophys Acta 116:189–197
    [Google Scholar]
  32. Victor T.C., Warren R., Butt J.L. 9 other authors 1997; Genome and MIC stability in Mycobacterium tuberculosis and indications for continuation of use of isoniazid in multidrug- resistant tuberculosis. J Med Microbiol 46:847–857
    [Google Scholar]
  33. Wheeler P.R., Anderson P.M. 1996; Determination of the primary target for isoniazid in mycobacterial mycolic acid biosynthesis with Mycobacterium aurum A + .. Biochem J 318:451–457
    [Google Scholar]
  34. World Health Organization 1997 The World Health Report 1997. Geneva, Switzerland:: World Health Organization.;
    [Google Scholar]
  35. Zhang Y., Heym B., Allen B., Young D., Cole S. 1992; The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis.. Nature 358:591–593
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-10-2697
Loading
/content/journal/micro/10.1099/00221287-144-10-2697
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error