1887

Abstract

Summary: The gene, encoding the E1α subunit of the mitochondrial pyruvate-dehydrogenase (PDH) complex was isolated from a genomic library by screening with a 1·1 kb internal fragment of the gene. The predicted amino acid sequence encoded by showed 87% similarity and 79% identity to its counterpart. Disruption of resulted in complete absence of PDH activity in cell extracts. The maximum specific growth rate on glucose of null mutants was 3·5-fold lower than that of the wild-type, whereas growth on ethanol was unaffected. Wild-type CBS 2359 exhibits a Crabtree-negative phenotype, i.e. no ethanol was produced in aerobic batch cultures grown on glucose. In contrast, substantial amounts of ethanol and acetaldehyde were produced in aerobic cultures of an isogenic null mutant. A wild-type specific growth rate was restored after introduction of an intact gene but not, as previously found for mutants, by cultivation in the presence of leucine. The occurrence of aerobic fermentation and slow growth of the null mutant indicate that, although present, the enzymes of the PDH bypass (pyruvate decarboxylase, acetaldehyde dehydrogenase and acetyl-CoA synthetase) could not efficiently replace the PDH complex during batch cultivation on glucose. Only at relatively low growth rates ( = 0·10 h) in aerobic, glucose-limited chemostat cultures, could the PDH bypass completely replace the PDH complex, thus allowing fully respiratory growth. This resulted in a lower biomass yield [g biomass (g glucose)] than in the wild-type due to a higher consumption of ATP in the PDH bypass compared to the formation of acetyl-CoA via the PDH complex.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-12-3437
1998-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/12/mic-144-12-3437.html?itemId=/content/journal/micro/10.1099/00221287-144-12-3437&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W, Lipman D.J. 1990; Basic local alignment search tool.. J Mol Biol 215:403–410
    [Google Scholar]
  2. Behai R.H., Browning K.S., Reed L.J. 1989; Nucleotide and deduced amino acid sequence of the alpha subunit of yeast pyruvate dehydrogenase. . Biochem Biophys Res Commun 164:941–946
    [Google Scholar]
  3. van den Berg M.A., de Jong-Gubbels P., Kortland C.J., van Dijken J.P., Pronk J.T., Steensma H.Y. 1996; The two acetyl- coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation.. J Biol Chem 271:28953–28959
    [Google Scholar]
  4. Bianchi M.M., Tizziani L, Destruellen M., Frontaii L., Wésolowski-Louvel, M. 1996; The ' petite-negative ' yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity.. Mol Microbiol 19:27–36
    [Google Scholar]
  5. Bishop D.K., Park D., Xu L., Kleckner N. 1992; DMCl : a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression.. Cell 69:439–456
    [Google Scholar]
  6. Boeke J.D., LaCroute F., Fink G.R. 1984; A positive selection for mutants lacking orotidine-5' phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance.. Mol Gen Genet 197:345–346
    [Google Scholar]
  7. Chen X.J., Clark-Walker G.D. 1996; The mitochondrial genome integrity gene, MGll, of Kluyveromyces lactis encodes the β-subunit of F1-ATPase.. Genetics 144:1445–1454
    [Google Scholar]
  8. de Deken R.H. 1966; The Crabtree effect: a regulatory system in yeast.. J Gen Microbiol 44:149–156
    [Google Scholar]
  9. van Dijken J.P., Scheffers W.A. 1986; Redox balances in the metabolism of sugars by yeasts.. FEMS Microbiol Rev 32:199–224
    [Google Scholar]
  10. Fiechter A., Fuhrmann G.F. 1981; Regulation of glucose metabolism in growing yeast cells.. Adv Microb Physiol 22:123–183
    [Google Scholar]
  11. Flikweert M.T., van der Zanden L., Janssen W.M.Th., van Di jken J.P. 1996; Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. . Yeast 12:247–257
    [Google Scholar]
  12. Flikweert M.T., van Di jken J.P. 1997; Metabolic responses of pyruvate decarboxylase-negative Saccharomyces cerevisiae to glucose excess.. Appl Environ Microbiol 63:3399–3404
    [Google Scholar]
  13. Gatignol A., Dassain M., Tirabi G. 1990; Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance.. Gene 9:35–1
    [Google Scholar]
  14. Hensing M. C. M., Rouwenhorst R. J., Heijnen J. J., van Dijken J. P., Pronk J. T. 1995; Physiological and technological aspects of large-scale heterologous-protein production with yeasts.. Antonie Leeuwenhoek 67:261–279
    [Google Scholar]
  15. Heus J.J., Zonneveld B.J.M., Steensma H.Y., van den Berg J.A. 1990; Centromeric DNA of Kluyveromyces lactis. . Curr Genet 18:517–522
    [Google Scholar]
  16. Hohmann S. 1997; Pyruvate decarboxylases.. In Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology and Applications pp. 187–211 Zimmermann F. K., Entian. K. D. Edited by Basel:: Technomic.;
    [Google Scholar]
  17. Holm C., Meeks-Wagner C.W., Fangman W.L., Botstein P. 1986; A rapid, efficient method for isolation of DNA from yeast.. Gene 42:169–173
    [Google Scholar]
  18. Jacq C., Alt-Morbe J., Andre B. 133 other authors 1997; The nucleotide sequence of Saccharomyces cerevisiae chromosome IV.. Nature 387:75–78
    [Google Scholar]
  19. James A.G., Cook R.M., West S.M., Lindsan J.G. 1995; The pyruvate dehydrogenase complex of Saccharomyces cerevisiae is regulated by phosphorylation.. FEBS Lett 373:111–114
    [Google Scholar]
  20. Käppeli O. 1986; Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts.. Adv Microb Physiol 28:181–209
    [Google Scholar]
  21. Kiers J., Zeeman A.M., Luttik M.A.H., Thiele C., Castrillo J.I., Steensma H.Y., van Dijken J.P., Pronk J.T. 1998; Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 14:459–469
    [Google Scholar]
  22. Kispal G., Cseko J., Alkonyi I., Sandor A. 1991; Isolation and characterization of carnitine acetyl-transferase from Saccharomyces cerevisiae. . Biochim Biophys Acta 1085:217–222
    [Google Scholar]
  23. Kohlhaw G.B., Tan-Wilson A. 1977; Carnitine-acetyl- transferase: candidate for the transfer of acetyl groups through the mitochondrial membrane of yeast. J Bacterial 129:1159–1161
    [Google Scholar]
  24. Kresze G.B., Ronft H. 1981; Pyruvate dehydrogenase complex fom baker's yeast. Eur J Biochem 119:573–579
    [Google Scholar]
  25. Mulder W., Winkler A.A., Scholten I.H.J.M., Zonneveld B.J.M., de Winde J.H., Steensma H.Y., Grivell L.A. 1994; Centromere promoter factors (CPFl) of the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis are functionally interchangeable, despite low overall homology. Curr Genet 26:198–207
    [Google Scholar]
  26. Postma E., Scheffers W.A., van Dijken J.P. 1989; Kinetics of growth and glucose transport in glucose limited chemostat cultures of Saccharomyces cerevisiae CBS8066. Yeast 5:159–165
    [Google Scholar]
  27. Pronk J.T., Wenzel T.J., Luttik M.A.H., Klaassen C.C.M., Scheffers W.A., Steensma H.Y., van Dijken J.P. 1994; Energetic aspects of glucose metabolism in a pyruvate- dehydrogenase-negative mutant of Saccharomyces cerevisiae. . Microbiology 140:601–610
    [Google Scholar]
  28. Pronk J. T., Steensma H. Y., van Dijken J. P. 1996; Pyruvate metabolism in Saccharomyces cerevisiae. . Yeast 12:1607–1633
    [Google Scholar]
  29. Reed L.J. 1974; Multienzyme complexes. Accounts Chem Res 7:40–46
    [Google Scholar]
  30. Rossolini G.M., Riccio M.L, Galeotti C.L. 1992; Kluyveromyces lactis rDNA as a target for multiple integration by homologous recombination. Gene 119:75–81
    [Google Scholar]
  31. Sambrook J., Fritsch E.F., Maniatis T. 1989; Molecular Cloning:. a Laboratory Manual, 2nd. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  32. Sonnleitner B. 1991; Dynamics of yeast metabolism and regulation. Bioprocess Eng 6:187–193
    [Google Scholar]
  33. Steensma H.Y. 1997; From pyruvate to acetyl-coenzyme A and oxaloacetate.. In Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology and Applications, pp. 339–358 Zimmermann F. K., Entian. K. D. Edited by Basel:: Technomic.;
    [Google Scholar]
  34. Steensma H.Y., Holterman L., Dekker I., van Sluis C.A., Wenzel T.J. 1990; Molecular cloning of the gene for the Ela subunit of the pyruvate dehydrogenase complex from Saccharomyces cerevisiae. . Eur J Biochem 191:769–774
    [Google Scholar]
  35. Swinkels B.W., van Ooyen A.J.J., Bonekamp F.J. 1993; The yeast Kluyveromyces lactis as an efficient host for heterologous protein production. Antonie Leeuwenhoek 64:187–201
    [Google Scholar]
  36. Teunissen A.W.R.H., van den Berg J.A., Steensma H.Y. 1993; Physical localization of the flocculation gene ELOl on chromosome 1 of Saccharomyces cerevisiae. . Yeast 9:1–10
    [Google Scholar]
  37. Uhlinger D.J., Yang C.Y., Reed L.L. 1986; Phosphorylation- dephosphorylation of pyruvate dehydrogenase from yeast. Biochemistry 25:5673–5677
    [Google Scholar]
  38. van Urk H., Mak P.R., Scheffers W.A., van Dijken J.P. 1988; Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast283–291
    [Google Scholar]
  39. Verduyn C. 1991; Physiology of yeasts in relation to growth yields. Antonie Leeuwenhoek 60:325–355
    [Google Scholar]
  40. Verduyn C., van Di jken J.P., Scheffers S. 1984; Colorimetric alcohol assays with alcohol oxidase. J Microbiol Methods 2:15–25
    [Google Scholar]
  41. Verduyn C., Postma E., Scheffers W.A., van Dijken J.P. 1992; Effect of benzoic acid on metabolic fluxes in yeasts: a continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517
    [Google Scholar]
  42. Wenzel T.J., van den Berg M.A., Visser W., van den Berg J.A.8iSteensma. 1992a; Characterization of Saccharomyces cerevisiae mutants lacking the Eα-subunit of the pyruvate dehydrogenase complex. Eur J Biochem 209:697–705
    [Google Scholar]
  43. Wenzel T.J., Migliazza A., Steensma H.Y., van den Berg J.A. 1992b; Efficient selection of phleomycin resistant Saccharomyces cerevisiae transformants. Yeast 8:667–668
    [Google Scholar]
  44. Wzésolowski-Louvel M., Breunig K.D. 1996; Kluyveromyces lactis.. In Nonconventional Yeasts in Biotechnology pp. 139–202 Wolf. K. Edited by Berlin & Heidelberg:: Springer.;
    [Google Scholar]
  45. Weusthuis R.A., Visser W., Pronk J.T., Scheffers W.A., van Dijken J.P. 1994; Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect. Microbiology 140:703–715
    [Google Scholar]
  46. Winkler A.A., Bobok A., Zonneveld B.J.M., Steensma H.Y., Hooykaas P.J.J. 1998; The lysine-rich C-terminal repeats of the centromere-binding factor 5 (Cbf5) of Kluyveromyces lactis are not essential for function. Yeast 14:37–48
    [Google Scholar]
  47. Woods D. 1984; Oligonucleotide screening of cDNA libraries. Focus 6:1–3
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-12-3437
Loading
/content/journal/micro/10.1099/00221287-144-12-3437
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error