1887

Abstract

A mutant of with reduced H-ATPase activity and the isogenic wild-type strain accumulated high levels of trehalose in response to a temperature upshift to 40 éC and after addition of 10% ethanol, but only modest levels in response to a rapid drop in external pH and after addition of decanoic acid. There was, however, no correlation between the absolute levels of trehalose in the stressed cells and their viability. All these treatments induced a significant decrease in intracellular pH, and surprisingly, this decrease was very similar in both strains, indicating that intracellular acidification could not be the triggering mechanism for trehalose accumulation in response to stress. A careful investigation of metabolic parameters was carried out to explain how trehalose accumulated under the four different stress conditions tested. No single and common mechanism for trehalose accumulation could be put forward and the transcriptional activation of was not unequivocally related to trehalose accumulation. Another finding was that a mutant exhibited a two- to threefold greater capacity to accumulate trehalose than the isogenic wild-type. This enhanced disaccharide synthesis could be attributed to a twofold higher trehalose-6-phosphate synthase activity, together with a fourfold higher content of intracellular UDP-Glc. In addition, this mutant showed 1.5-fold higher levels of ATP compared to the wild-type. The various stress treatments studied showed that a drop in intracellular pH does not correlate with trehalose accumulation. It is suggested that plasma membrane alteration could be the physiological trigger inducing trehalose accumulation in yeast.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-4-1103
1998-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/4/mic-144-4-1103.html?itemId=/content/journal/micro/10.1099/00221287-144-4-1103&mimeType=html&fmt=ahah

References

  1. Alexandre H., Rousseaux R., Charpentier C. (1994); Ethanol adaptation mechanisms in Saccharomyces cerevisiae.. Biotechnol Appl Biochem, 20:173–183
    [Google Scholar]
  2. Alexandre H., Mathieu B., Charpentier C. (1996); Alteration in membrane fluidity and lipid composition, and modulation of H+- ATPase activity in Saccharomyces cerevisiae caused by decanoic acid.. Microbiology, 142:(3),469–475 [View Article]
    [Google Scholar]
  3. Attfield P. V. (1987); Trehalose accumulation in Saccharomyces cerevisiae during exposure to agents that induce heat shock response.. Febs Letters, 225:(1–2),259–263 [View Article]
    [Google Scholar]
  4. Beaven M. J., Charpentier C., Rose A. H. (1982); Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition of Saccharomyces cerevisiae NCYC 431. Journal of General Microbiology, 1281447–1455
    [Google Scholar]
  5. Bell W., Klaassen P., Ohnacker M., Boiler T., Herweijer M. et al. (1992); Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation.. European Journal of Biochemistry, 209:(3),951–959 [View Article]
    [Google Scholar]
  6. Bergmeyer H. U. (1986) Methods in Enzymatic Analysis, 3rd edn.. Weinheim:: Verlag Chemie;
    [Google Scholar]
  7. Brewster J. L., De Valoir T., Dwyer N. D., Winter E., Gustin M. C. (1993); An osmosensing signal transduction pathway in yeast.. Science, 259:(5102),1760–1763 [View Article]
    [Google Scholar]
  8. Coote P. J.„ Cole, M. B., Jones M. V. (1991); Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH.. Journal of General Microbiology, 137:(7),1701–1708 [View Article]
    [Google Scholar]
  9. Coote P. J., Jones M. V., Seymour I. J., Rowe D. L., Ferninando D. P. et al. (1994); Activity of plasma membrane H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae.. Microbiology, 140:(8),1881–1890 [View Article]
    [Google Scholar]
  10. Crowe L. M., Crowe J. H., Chapman D. (1984); Preservation of membranes in anhydrobiotic organisms: the role of trehalose.. Science, 223:(4637),240–247 [View Article]
    [Google Scholar]
  11. De Virgilio C., Piper P., Boiler T., Wiemken A. (1991); Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hspl04 and in the absence of protein synthesis.. Febs Letters, 288:(1–2),86–90 [View Article]
    [Google Scholar]
  12. De Virgilio C., Hottiger T., Dominguez J., Boiler T., Wiemken A. (1994); The role of trehalose synthesis for the acquisition of thermotolerance in yeast. 1. Genetic evidence that trehalose is a thermoprotectant.. European Journal of Biochemistry, 219:(1–2),179–186 [View Article]
    [Google Scholar]
  13. Eraso P., Gancedo C. (1987); Activation of yeast plasma membrane ATPase by acid pH during growth.. Febs Letters, 224:(1),187–192 [View Article]
    [Google Scholar]
  14. Francois J., Van Schaftingen E., Hers H.-G. (1984); The mechanism by which glucose increases fructose 2,6-biphosphate concentration in Saccharomyces cerevisiae.. European Journal of Biochemistry, 145:(1),187–193 [View Article]
    [Google Scholar]
  15. Francois J., Blazquez M. A., Arifio J., Gancedo C. (1997) Storage carbohydrates in the yeast Saccharomyces cerevisiae.. Edited by Zimmermann F. K. In Yeast Sugar Metabolism Lancaster, PA:: Technomics Publishing;285–311
    [Google Scholar]
  16. Gonzalez B., Francois J., Renaud M. (1997); A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol.. Yeast, 13:1347–1356 [View Article]
    [Google Scholar]
  17. Gross C., Watson K. (1996); Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in derepressed Saccharomyces cerevisiae.. Biochem Biophys Res Commun, 220:(3),766–772 [View Article]
    [Google Scholar]
  18. Haworth R. S., Fliegel L. (1993); Intracellular pH in Schizo- saccharomyces pombe compared with Saccharomyces cerevisiae.. Molecular and Cellular Biochemistry, 124:(2),131–140 [View Article]
    [Google Scholar]
  19. Hottiger T., Schmutz P., Wiemken A. (1987); Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae.. Journal of Bacteriology, 169:(12),5518–5522 [View Article]
    [Google Scholar]
  20. Kopp M., Mliller H., Holzer H. (1993); Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae.. Journal of Biological Chemistry, 268:(7),4766–4774 [View Article]
    [Google Scholar]
  21. Mager W. H., Varela J.C.S. (1993); Osmostress response of the yeast Saccharomyces cerevisiae.. Molecular Microbiology, 10:(2),253–258 [View Article]
    [Google Scholar]
  22. Mansure J. J. C., Panek A., Crowe L. M., Crowe J. H. (1994); Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochimica Et Biophysica Acta, 1191309–316
    [Google Scholar]
  23. Neves M. J., Francois J. (1992); On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae.. Biochemical Journal, 288:(3),559–564 [View Article]
    [Google Scholar]
  24. Nwaka S., Kopp M., Burget M., Deuchler I., Kienle I. et al. (1994); Is thermotolerance of yeast dependent on trehalose accumulation ?. Febs Letters, 344:(2–3),225–228 [View Article]
    [Google Scholar]
  25. Nwaka S., Mechler B., Destruelle M., Holzer H. (1995); Phenotypic features of trehalase mutants in Saccharomyces cerevisiae.. Febs Letters, 360:(3),286–290 [View Article]
    [Google Scholar]
  26. Odumeru J. A., D'Amore T., Russel I. St Stewart, G. G. (1993); Alteration in fatty acid composition and trehalose concentration of Saccharomyces cerevisiae brewing strain in response to heat and ethanol shock.. Journal of Industrial Microbiology, 11:(2),113–119 [View Article]
    [Google Scholar]
  27. Pampulha M. E., Loureiro-Dias M. C. (1989); Combined effect of acetic acid, pH and ethanol.. Appl Microbiol Biotechnol, 31:23–27
    [Google Scholar]
  28. Panaretou B., Piper P. W. (1990); Plasma-membrane ATPase action affects several stress tolerances of Saccharomyces cerevisiae and Schizosaccharomyces pombe as well as the extent and duration of the heat shock response.. Journal of General Microbiology, 136:(9),1763–1770 [View Article]
    [Google Scholar]
  29. Panek A. D., Panek A. C. (1990); Trehalose metabolism and its role in Saccharomyces cerevisiae.. Journal of Biotechnology, 3:(3),121–130 [View Article]
    [Google Scholar]
  30. Parrou J. L., Teste M.-A., Francois J. (1997); Effect of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose.. Microbiology, 143:(6),1891–1900 [View Article]
    [Google Scholar]
  31. Pena A., Ramirez J., Rosas G., Calahorra M. (1995); Proton pumping and the internal pH of yeast cells, measured with pyranine introduced by electroporation.. Journal of Bacteriology, 177:(4),1017–1022 [View Article]
    [Google Scholar]
  32. Piper P. W. (1995); The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap.. Fems Microbiology Letters, 134:(2–3),121–137 [View Article]
    [Google Scholar]
  33. Reinders A., BUrckert N., Hohmann S., Thevelein J. M., Boiler T., Wiemken A., De Virgilio C. (1997); Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock.. Molecular Microbiology, 24:(4),687–695 [View Article]
    [Google Scholar]
  34. Rosa M. F., SS-Correia I. (1992); In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces.. Appl Environ Microbiol, 57:(3),830–835 [View Article]
    [Google Scholar]
  35. Rose A. H. (1989) Influence of the environment on lipid composition.. Edited by Ratledge C., Wilkinson N. G. In Microbial Lipids vol. 2 London:: Academic Press;255–278
    [Google Scholar]
  36. Schuller C., Brewster J. L., Alexander M. R., Gustin M. C., Ruis H. (1994); The HOG pathway controls osmotic regulation of transcription via stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.. Embo Journal, 13:(18),4382–4389 [View Article]
    [Google Scholar]
  37. Serrano R. (1988); Structure and function of plasma membrane ATPase.. Annu Rev Plant Physiol Plant Mol Biol, 40:(1),61–94 [View Article]
    [Google Scholar]
  38. Slavik J. (1982); Intracellular pH of yeast cells measured with fluorescent probes.. Febs Letters, 140:(1),22–26 [View Article]
    [Google Scholar]
  39. Thevelein J. M., Hohmann S., Thomas D. S., Hossack A. J., Rose A. H. (1995); Trehalose synthase: guard to the gate of glycolysis in yeast?, Plasma membrane lipid composition and ethanol tolerance.. Trends in Biochemical Sciences, 20:(1),3–10 [View Article]
    [Google Scholar]
  40. Valle E., Bergillos L., Gascon S., Parra F., Ramos, S. (1986); Trehalase activation in yeasts is mediated by an internal acidification.. European Journal of Biochemistry, 154:(2),247–251 [View Article]
    [Google Scholar]
  41. Van Dijck P., Colavizza D., Smet P., Thevelein J. M. (1995); Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells.. Appl Environ Microbiol, 61:(1),109–115 [View Article]
    [Google Scholar]
  42. Van Dyck L., Petrerski J. H., Wolosker H., Rodrigues G., Schlesser A. et al. (1990); Molecular and biochemical characterization of the Dio-9-resistant pmal 1 mutation of the H+-ATPase from Saccharomyces cerevisiae.. European Journal of Biochemistry, 194:(3),785–790 [View Article]
    [Google Scholar]
  43. Van Laere A. (1989); Trehalose, reserve and/or stress metabolite.. Fems Microbiology Reviews, 63:(3),201–210 [View Article]
    [Google Scholar]
  44. Vandercammen A., Francois J., Hers H. G. (1989); Characterisation of trehalose-6-phosphate synthase and trehalose-6- phosphate phosphatase of Saccharomyces cerevisiae.. European Journal of Biochemistry, 182:(3),613–620 [View Article]
    [Google Scholar]
  45. Varela J. C. 5., Praekelt U. M., Meacock P. A., Planta R. J., Mager W. H. (1995); The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A.. Molecular and Cellular Biology, 15:(11),6232–6245 [View Article]
    [Google Scholar]
  46. Vuorio O. E., Kalkkinen N., Londesborough J. (1993); Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae.. European Journal of Biochemistry, 216:(3),849–861 [View Article]
    [Google Scholar]
  47. Winkler K., Kienle I., Burget M., Wagner J., Holzer, H. (1991); Metabolic regulation of the trehalose content of vegetative yeast.. Febs Letters, 291:(2),269–272 [View Article]
    [Google Scholar]
  48. Wiemken A. (1990); Trehalose in yeast, stress protectant rather than reserve carbohydrate.. Antonie Leeuwenhoek, 58:(3),209–217 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-4-1103
Loading
/content/journal/micro/10.1099/00221287-144-4-1103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error