1887

Abstract

Biofilms comprising a pure and a mixed culture of sulphate-reducing bacteria (SRB) were grown in continuous culture. When exposed to 20 or 200 μM Cd, both cultures accumulated Cd but the mixed culture accumulated more and continued to accumulate Cd during the experiment, whereas accumulation by the pure cultures ceased after 4-6 d. Unlike the pure culture, the mixed culture also accumulated both protein and carbohydrate throughout the experiment proportionally to Cd which showed that accumulation required the production of biofilm material. Electron microscopy showed the presence of polysaccharide and particulates in both pure and mixed cultures, irrespective of the presence of Cd. However, energy-dispersive X-ray analysis (EDXA) showed that accumulation of Cd in the form of CdS occurred in biofilms exposed to Cd while back-scattered electron imaging of sections indicated that the accumulation of Cd was localized in a superficial layer of the biofilm. The mechanism of uptake, therefore, appeared to be entrapment and/or precipitation of CdS at the biofilm surface. The relatively low Cd uptake by the pure culture biofilm was attributed to its less efficient growth and polysaccharide production. These results indicate that mixed SRB cultures are more effective than pure cultures for metal removal and underlines significant differences between the biology of pure and mixed cultures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-5-1407
1998-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/5/mic-144-5-1407.html?itemId=/content/journal/micro/10.1099/00221287-144-5-1407&mimeType=html&fmt=ahah

References

  1. Anwar, H., Strap, J. L., Costerton, J. W. (1992); Establishment of ageing biofilms: possible mechanism of bacterial resistance to antimicrobial therapy.. Antimicrob Agents Chemother 36,1347— 1351.
  2. Barnes, L. J., Scheeren, P. J. M., Buisman, C. J. N. (1994) Microbial removal of heavy metals and sulphate from contaminated groundwaters.. Edited by Means, J. L., Hinchee, R. E. Emerging Technology for Bioremediation of Metals. Boca Raton, FL:: Lewis Publishers,;38–49
    [Google Scholar]
  3. Beech, I. B., Cheung, C. W. S. (1995); Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions.. Int Biodeterior Biodegrad 35:(1–3)59–72 [View Article]
    [Google Scholar]
  4. Costerton, J. W., Lewandowski, Z., DeBeer, D., Caldwell D. E., Korber, D.R., Lappin-Scott, H. (1994); Biofilms, the customized microniche.. Journal of Bacteriology 176:(8)2137–2142 [View Article]
    [Google Scholar]
  5. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., Lappin-Scott, H. (1995); Microbial biofilms.. Annual Review of Microbiology 49:(1)711–745 [View Article]
    [Google Scholar]
  6. Flemming, C. A., Ferris, F. G.„ Beveridge, T., J., Bailey, G. W. (1990); Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites.. Appl Environ Microbiol 56:(10)3191–3203 [View Article]
    [Google Scholar]
  7. Flemming, H.-K. (1995); Sorption sites in biofilms.. Water Sci Tecbnol 32:(8)27–33 [View Article]
    [Google Scholar]
  8. Fortin, D., Southam, G., Beveridge, T. J. (1994); Nickel sulfide, iron-nickel sulfide and iron sulfide precipitation by a newly isolated Desulfotomaculum species and its relation to nickel resistance.. Fems Microbiology Ecology 14:(2)121–132 [View Article]
    [Google Scholar]
  9. Gadd, G. M. (1992a) Heavy metal pollutants: environmental and biotechnological aspects.. Edited by Lederberg, J. Encyclopedia of Microbiology. San Diego:: Academic Press,;351–360
    [Google Scholar]
  10. Gadd, G. M. (1992b) Microbial control of heavy metal pollution.. Edited by Fry, J. C., Gadd, G. M., Herbert, R. A., Jones, C. W., Watson-Craik, I. A. Microbial Control of Pollution. Cambridge:: Cambridge University Press,;59–88
    [Google Scholar]
  11. Gadd, G. M. (1996); Influence of microorganisms on the environmental fate of radionuclides.. Endeavour 20:(4)150–156 [View Article]
    [Google Scholar]
  12. Gadd, G. M., White, C. (1993); Microbial treatment of metal pollution-a working biotechnology?. Trends in Biotechnology 11:(8)353–359 [View Article]
    [Google Scholar]
  13. Hammack, R. W., Edenborn, H. M. (1992); The removal of nickel from mine waters using bacterial sulphate-reduction.. Appl Microbiol Biotechnol 37:(5)674–678 [View Article]
    [Google Scholar]
  14. Hamilton, W. A. (1994) Industrial problems due to biofilms.. Edited by Wimpenny, J., Nichols, W., Stickler, D., Lappin-Scott, H. Bacterial Biofilms and their Control in Medicine and Industry. Cardiff:: Bioline,;109–113
    [Google Scholar]
  15. Herbert, D., Phipps, F. J., Strange, R. E. (1971); Chemical analysis of microbial cells.. Methods Microbiol 5:210–344
    [Google Scholar]
  16. Holt, G. H., Krieg, N. R., Sneath, P. H. A., Staley, J. T., Williams, S. T. (1994) Group 7. Dissimilatory sulfate- or sulfur-reducing bacteria. . In Bergey’s Manual of Determinative Bacteriology., 9th. edition, Baltimore:: Williams & Wilkins,;335–346
    [Google Scholar]
  17. Kogel-Knabner, I. (1995) Composition of soil organic matter.. Edited by Kassem, A., Namipieri, P. Methods in Applied Soil Microbiology and Biochemistry. London:: Academic Press,;66–80
    [Google Scholar]
  18. Lee, W., Lewandowski, Z., Nielsen, P. H., Hamilton, W. A. (1995); Role of sulfate-reducing bacteria in corrosion of mild steel - a review.. Biofouling 8:(3)165–187 [View Article]
    [Google Scholar]
  19. Little, B. J., Wagner, P. A., Characklis, W. G., Lee, W. (1990) Microbial corrosion.. Edited by Characklis, W. G., Marshall, K. C. Biofilms. New York:: Wiley,;635–670
    [Google Scholar]
  20. Pacepavicius, G., Lau, Y. L., Liu, D., Okamura, H., Aoyama, I. (1997); A rapid biochemical method for estimating microbial biomass.. Environ Toxicol Water Qual 12:97–100 [View Article]
    [Google Scholar]
  21. Postgate, J. R. (1984) The Sulphate-Reducing Bacteria. Cambridge:: Cambridge University Press;
    [Google Scholar]
  22. Poulson, S. R., Colberg, P. J. S., Drever, J. I. (1997); Toxicity of heavy metals (Ni, Zn) to Desulfovibrio desulfuricans.. Geo- microbiol J 14:41–49
    [Google Scholar]
  23. Sillen, L. G. (1964) Inorganic ligands.. Edited by Sillen, L. G., Martell, A. E. Stability Constants of Metal-Ion Complexes. London:: The Chemical Society,;1–356
    [Google Scholar]
  24. Sokal, R. R., Rohlf, F. J. (1981) Biometry. Oxford:: W. H. Freeman;
    [Google Scholar]
  25. Videla, H. A. (1994) Biocorrosion of nonferrous metal surfaces.. Edited by Geesey, G. G., Lewandowski, Z., Flemming, H. K. Bio fouling and Biocorrosion in Industrial Water Systems. Boca Raton, FL:: Lewis Publishers,;231–243
    [Google Scholar]
  26. Vieira, M. J., Melo L. F. (1995); Effect of clay particles on the behaviour of biofilms formed by Pseudomonas fluorescens.. Water Science and Technology 32:(8)45–52 [View Article]
    [Google Scholar]
  27. Walker, S. G., Flemming, C. A., Ferris, F. G., Beveridge, T. J., Bailey, G. W. (1989); Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution.. Appl Environ Microbiol 55:(11)2976–2984 [View Article]
    [Google Scholar]
  28. White, C., Gadd, G. M. (1995); Determination of metals and metal fluxes in algae and fungi.. Science of The Total Environment 176:(1–3)107–115 [View Article]
    [Google Scholar]
  29. White, C., Gadd, G. M. (1996a); Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration.. Microbiology 142:(8)2197–2205 [View Article]
    [Google Scholar]
  30. White, C., Gadd, G. M. (1996b); A comparison of carbon/energy and complex nitrogen sources for bacterial sulphate reduction: potential applications to bioprecipitation of toxic metals as sulphides.. J Indust Microbiol 17:(2)116–123 [View Article]
    [Google Scholar]
  31. White, C., Gadd, G. M. (1997); An internal sedimentation bioreactor for laboratory-scale removal of toxic metals from soil leachates using biogenic sulphide precipitation.. J Indust Microbiol Biotechnol 18:(6)414–421 [View Article]
    [Google Scholar]
  32. White, C., Sayer, J. A., Gadd, G. M. (1997); Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination.. Fems Microbiology Reviews 20:(3–4)503–516 [View Article]
    [Google Scholar]
  33. Widdel, F., Pfennig, N. (1981); Studies on dissimilatory sulfate- reducing bacteria that decompose fatty acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments - description of Desulfobacter postgatei gen.. Archives of Microbiology 129:(v.)sp nov
    [Google Scholar]
  34. Widdel, F., Pfennig, N. (1982); Studies on dissimilatory sulfate- reducing bacteria that decompose fatty acids. 2. Incomplete oxidation of propionate by Desulfobulbus propionicus gen.. Archives of Microbiology 131:(v.)sp nov
    [Google Scholar]
  35. Wierzchos, J., Ascaso, C. (1993); Application of back-scattered electron imaging to the study of the lichen-rock interface.. J Microsc 175:(1)54–59 [View Article]
    [Google Scholar]
  36. Wimpenny, J. W. T., Kinniment, S. L., Scourfield, M. A. (1993) The physiology and biochemistry of biofilm.. Edited by Denyer, S. P., Gorman, S. P., Sussman, M. Microbial Biofilms: Formation and Control. Oxford:: Blackwell Scientific Publications,;51–94
    [Google Scholar]
  37. Yu, F. P., McFeters, G. A. (1994); Physiological responses of bacteria in biofilms to disinfection.. Appl Environ Microbiol 60:(7)2462–2466 [View Article]
    [Google Scholar]
  38. Zinkevich, V., Bogdarina, I., Kang, H., Hill, M. A. W., Tapper, R., Beech, I. B. (1996); Characterization of exopolymers produced by different isolates of marine sulphate-reducing bacteria, lnt Bio-deterior Biodegrad,. 37163–172
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-5-1407
Loading
/content/journal/micro/10.1099/00221287-144-5-1407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error