1887

Abstract

Crh of exhibits 45% sequence identity when compared to histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS). Crh can be phosphorylated by ATP at the regulatory Ser-46 and similar to P-Ser-HPr, P-Ser-Crh plays a role in carbon-catabolite repression. The sequence around the phosphorylatable Ser-46 in Crh exhibits strong similarity to the corresponding sequence of HPr of Gram-positive and a few Gram-negative bacteria. In contrast, the catalytic His-15, the site of PEP-dependent phosphorylation in HPr, is replaced with a glutamine in Crh. When Gln-15 was exchanged for a histidyl residue, PEP-dependent enzyme I-catalysed phosphorylation of the mutant Crh was observed. However, expression of the mutant allele did not restore growth of a deletion strain on the PTS sugars glucose, fructose or mannitol or on the non-PTS sugar glycerol. In contrast, Q15H mutant Crh could phosphorylate the transcriptional activator LevR as well as LevD, the enzyme IIA of the fructose-specific lev-PTS, which together with enzyme I, HPr and LevE forms the phosphorylation cascade regulating induction of the operon via LevR. As a consequence, the constitutive expression from the promoter observed in a Δ strain became inducible with fructose when the allele was expressed in this strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3195
1999-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453195a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3195&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Arantes O., Lereclus D. 1991; Construction of cloning vectors for Bacillus thuringiensis. . Gene 108:115–119 [CrossRef]
    [Google Scholar]
  3. Charrier V., Deutscher J., Galinier A., Martin-Verstraete I. 1997a; Protein phosphorylation chain of a Bacillus subtilis fructose-specific phosphotransferase system and its participation in regulation of the expression of the lev operon. Biochemistry 36:1163–1172 [CrossRef]
    [Google Scholar]
  4. Charrier V., Buckley E., Parsonage D., Galinier A., Darbon E., Jaquinod M., Forest E., Deutscher J., Claiborne A. 1997b; Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue. J Biol Chem 272:14166–14174 [CrossRef]
    [Google Scholar]
  5. Cortay J. C., Nègre D., Scarabel M., Ramseier T., Vartak N. B., Reizer J., Saier M. H. Jr, Cozzone A. J. 1994; In vitro asymmetric binding of the pleiotropic regulatory protein, FruR, to the ace operator controlling glyoxylate shunt enzyme synthesis. J Biol Chem 269:14885–14891
    [Google Scholar]
  6. Deutscher J., Saier M. H. Jr 1983; ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. . Proc Natl Acad Sci USA 80:6790–6794 [CrossRef]
    [Google Scholar]
  7. Deutscher J., Bauer B., Sauerwald H. 1993; Regulation of glycerol metabolism in Enterococcus faecalis by phosphoenolpyruvate-dependent phosphorylation of glycerol kinase catalyzed by Enzyme I and HPr of the phosphotransferase system. J Bacteriol 175:3730–3733
    [Google Scholar]
  8. Deutscher J., Küster E., Bergstedt U., Charrier V., Hillen W. 1995; Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon-catabolite repression in Gram-positive bacteria. Mol Microbiol 15:1049–1053 [CrossRef]
    [Google Scholar]
  9. Du Y., Holtel A., Reizer J., Saier M. H. Jr 1996; Sigma54-dependent transcription of the Pseudomonas putida xylS operon is influenced by the IIANtr protein of the phosphotransferase system in Escherichia coli. . Res Microbiol 147:129–132 [CrossRef]
    [Google Scholar]
  10. Fujita Y., Miwa Y., Galinier A., Deutscher J. 1995; Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17:953–960 [CrossRef]
    [Google Scholar]
  11. Galinier A., Haiech J., Kilhoffer M.-C., Jaquinod M., Stülke, J., Deutscher J., Martin-Verstraete I. 1997; The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon-catabolite repression. Proc Natl Acad Sci USA 94:8439–8444 [CrossRef]
    [Google Scholar]
  12. Galinier A., Kravanja M., Engelmann R., Hengstenberg W., Kilhoffer M.-C., Deutscher J., Haiech J. 1998; New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci USA 95:1823–1828 [CrossRef]
    [Google Scholar]
  13. Galinier A., Deutscher J., Martin-Verstraete I. 1999; Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J Mol Biol 286:307–314 [CrossRef]
    [Google Scholar]
  14. Galtier N., Gouy M., Gautier C. 1996; seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548
    [Google Scholar]
  15. Gay P., Delobbe A. 1973; Fructose transport in Bacillus subtilis. . Eur J Biochem 79:363–373
    [Google Scholar]
  16. Geerse R. H., Izzo F., Postma P. W. 1989; The PEP:fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities. Mol Gen Genet 216:517–525 [CrossRef]
    [Google Scholar]
  17. Gonzy-Tréboul, G., de Waard J. H., Zagorec M., Postma P. W. 1991; The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains. Mol Microbiol 5:1241–1249 [CrossRef]
    [Google Scholar]
  18. Gösseringer R., Küster E., Galinier A., Deutscher J., Hillen W. 1997; Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J Mol Biol 266:665–676 [CrossRef]
    [Google Scholar]
  19. Henkin T. M., Grundy F. J., Nicholson W. L., Chambliss G. H. 1991; Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a transacting gene product homologous to the Escherichia coli lacI and galR repressors. Mol Microbiol 5:575–584 [CrossRef]
    [Google Scholar]
  20. Hueck C. J., Hillen W., Saier M. H. Jr 1994; Analysis of a cis-active sequence mediating catabolite repression in Gram-positive bacteria. Res Microbiol 145:503–518 [CrossRef]
    [Google Scholar]
  21. Ireton K., Rudner D. Z., Siranosian K. J., Grossman A. D. 1993; Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev 7:283–294 [CrossRef]
    [Google Scholar]
  22. Jones D. H. A., Franklin C. H., Thomas C. M. 1994; Molecular analysis of the operon which encodes the RNA polymerase sigma factor σ54 of Escherichia coli. Microbiology 140:1035–1043 [CrossRef]
    [Google Scholar]
  23. Kim J. H., Voskuil M. I., Chambliss G. H. 1998; NADP, corepressor for the Bacillus catabolite control protein CcpA. Proc Natl Acad Sci USA 95:9590–9595 [CrossRef]
    [Google Scholar]
  24. Kravanja M., Engelmann R., Dossonnet V., Blüggel M., Meyer H. E., Frank R., Galinier A., Deutscher J., Hengstenberg W. 1999; The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol 31:59–66 [CrossRef]
    [Google Scholar]
  25. Kunst F., Rapoport G. 1995; Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. . J Bacteriol 177:2403–2407
    [Google Scholar]
  26. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the Gram-positive bacterium. Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  28. Martin-Verstraete I., Débarbouillé M., Klier A., Rapoport G. 1990; Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214:657–671 [CrossRef]
    [Google Scholar]
  29. Martin-Verstraete I., Stülke J., Klier A., Rapoport G. 1995; Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177:6919–6927
    [Google Scholar]
  30. Martin-Verstraete I., Charrier V., Stülke J., Galinier A., Erni B., Rapoport G., Deutscher J. 1998; Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol 28:293–303 [CrossRef]
    [Google Scholar]
  31. Martin-Verstraete I., Deutscher J., Galinier A. 1999; Phosphorylation of HPr and Crh, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J Bacteriol 181:2966–2969
    [Google Scholar]
  32. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  34. Powell B. S., Court D. L., Inada T., Nakamura Y., Michotey V., Cui X., Reizer A., Saier M. H. Jr, Reizer J. 1995; Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli: enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 270:4822–4839 [CrossRef]
    [Google Scholar]
  35. Reizer J., Novotny M. J., Stuiver I., Saier M. H. Jr 1984; Regulation of glycerol uptake by the phosphoenolpyruvate-sugar phosphotransferase system in Bacillus subtilis. . J Bacteriol 159:243–250
    [Google Scholar]
  36. Reizer J., Reizer A., Saier M. H. Jr 1992a; A proposed link between nitrogen and carbon metabolism involving protein phosphorylation in bacteria. Protein Sci 1:722–726 [CrossRef]
    [Google Scholar]
  37. Reizer J., Sutrina S. L., Wu L.-F., Deutscher J., Reddy P., Saier M. H. Jr 1992b; Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis and Escherichia coli. . J Biol Chem 267:9158–9169
    [Google Scholar]
  38. Reizer J., Reizer A., Saier M. H. Jr 1996; Novel PTS proteins revealed by bacterial genome sequencing: a unique fructose-specific phosphoryl transfer protein with two HPr-like domains in Haemophilus influenzae. . Res Microbiol 147:209–215 [CrossRef]
    [Google Scholar]
  39. Reizer J., Hoischen C., Titgemeyer F., Rivolta C., Rabus R., Stülke J., Karamata D., Saier M. H. Jr, Hillen W. 1998; A novel protein kinase that controls carbon-catabolite repression in bacteria. Mol Microbiol 27:1157–1169 [CrossRef]
    [Google Scholar]
  40. Romano A. H., Saier M. H. Jr, Harriott O. T., Reizer J. 1990; Physiological studies on regulation of glycerol utilization by the phosphoenolpyruvate:sugar phosphotransferase system in Enterococcus faecalis. . J Bacteriol 172:6741–6748
    [Google Scholar]
  41. Roossien F. F., Brink J., Robillard G. T. 1983; A simple procedure for the synthesis of [32P]phosphoenolpyruvate via the pyruvate kinase exchange reaction at equilibrium. Biochim Biophys Acta 760:185–187 [CrossRef]
    [Google Scholar]
  42. Saier M. H. Jr, Reizer J. 1992; Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. J Bacteriol 174:1433–1438
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969 [CrossRef]
    [Google Scholar]
  45. Stülke, J., Martin-Verstraete I., Charrier V., Klier A., Deutscher J., Rapoport G. 1995; The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177:6928–6936
    [Google Scholar]
  46. Stülke J., Arnaud M., Rapoport G., Martin-Verstraete I. 1998; PRD – a protein domain involved in PTS-dependent induction and carbon-catabolite repression of catabolic operons in bacteria. Mol Microbiol 28:865–874 [CrossRef]
    [Google Scholar]
  47. Tortosa P., Aymerich S., Lindner C., Saier M. H. Jr, Reizer J., Le Coq D. 1997; Multiple phosphorylation of SacY, a Bacillus subtilis transcriptional antiterminator negatively controlled by the phosphotransferase system. J Biol Chem 272:17230–17237 [CrossRef]
    [Google Scholar]
  48. Turinsky A. J., Grundy F. J., Kim J. H., Chambliss G. H., Henkin T. M. 1998; Transcriptional activation of the Bacillus subtilis ackA gene requires sequences upstream of the promoter. J Bacteriol 180:5961–5967
    [Google Scholar]
  49. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis. . Microbiology 144:3097–3104 [CrossRef]
    [Google Scholar]
  50. Waygood E. B., Mattoo R. L., Peri K. G. 1984; Phosphoproteins and the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium and Escherichia coli: evidence for IIIMannose, IIIFructose, IIIGlucitol, and the phosphorylation of enzyme IIMannitol and enzyme IIN-acetylglucosamine. J Cell Biochem 25:139–159 [CrossRef]
    [Google Scholar]
  51. Zalieckas J. M., Wray L. V., Fisher S. H. 1998; Expression of the Bacillus subtilis acsA gene: position and sequence context affect cre-mediated carbon-catabolite repression. J Bacteriol 180:6649–6654
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-11-3195
Loading
/content/journal/micro/10.1099/00221287-145-11-3195
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error