1887

Abstract

can utilize several sugars as single sources of carbon and energy. Many of these sugars are transported and concomitantly phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). In addition to its role in sugar uptake, the PTS is one of the major signal transduction systems in . In this study, an analysis of the complete set of PTS proteins encoded within the genome is presented. Fifteen sugar-specific PTS permeases were found to be present and the functions of novel PTS permeases were studied based on homology to previously characterized permeases, analysis of the structure of the gene clusters in which the permease encoding genes are located and biochemical analysis of relevant mutants. Members of the glucose, sucrose, lactose, mannose and fructose/mannitol families of PTS permeases were identified. Interestingly, nine pairs of IIB and IIC domains belonging to the glucose and sucrose permease families are present in ; by contrast only five Enzyme IIA-like proteins or domains are encoded within the genome. Consequently, some of the EIIA-like proteins must function in phosphoryl transfer to more than one IIB domain of the glucose and sucrose families. In addition, 13 PTS- associated proteins are encoded within the genome. These proteins include metabolic enzymes, a bifunctional protein kinase/phosphatase, a transcriptional cofactor and transcriptional regulators that are involved in PTS-dependent signal transduction. The PTS proteins and the auxiliary PTS proteins represent a highly integrated network that catalyses and simultaneously modulates carbohydrate utilization in this bacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3419
1999-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453419a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3419&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215403–410 [CrossRef]
    [Google Scholar]
  2. Bachem S., Stülke J. 1998; Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system. J Bacteriol 180:5319–5326
    [Google Scholar]
  3. Beijer L., Rutberg L. 1992; Utilisation of glycerol and glycerol-3-phosphate is differently affected by the phosphotransferase system in Bacillus subtilis.FEMS. Microbiol Lett 100:217–220 [CrossRef]
    [Google Scholar]
  4. Blattner F. R., Plunkett G. I., Bloch C. A. 14 other authors 1997; The complete genome sequence of Escherichia coli K12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  5. Bouma C. L., Reizer J., Reizer A., Robrish S. A., Thompson J. 1997; 6-Phospho-α-d-glucosidase from Fusobacterium mortiferum: cloning, expression, and assignment to family 4 of the glycosylhydrolases.J. Bacteriol 179:4129–4137
    [Google Scholar]
  6. Branny P., De La Torre F., Garel J. R. 1996; The genes for phosphofructokinase and pyruvate kinase of Lactobacillus delbrueckii subsp. bulgaricus constitute an operon. J Bacteriol 178:4727–4730
    [Google Scholar]
  7. Charrier V., Buckley E., Parsonage D., Galinier A., Darbon E., Jaquinod M., Forest E., Deutscher J., Claiborne A. 1997; Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system- catalyzed phosphorylation of a single histidyl residue. J Biol Chem 272:14166–14174 [CrossRef]
    [Google Scholar]
  8. Dahl M. K. 1997; Enzyme IIGlc contributes to trehalose metabolism in Bacillus subtilis. FEMS Microbiol Lett 148:233–238 [CrossRef]
    [Google Scholar]
  9. Débarbouillé M., Fouet A., Arnaud M., Klier A., Rapoport G. 1990 The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators.J Bacteriol 1723966–3973
    [Google Scholar]
  10. Débarbouillé M., Martin-Verstraete I., Klier A., Rapoport G. 1991; The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both σ 54- and phosphotransferase system-dependent regulators. Proc Natl Acad Sci USA 88:2212–2216 [CrossRef]
    [Google Scholar]
  11. Deutscher J., Fischer C., Charrier V., Galinier A., Lindner C., Darbon E., Dossonet V. 1997; Regulation of carbon metabolism in Gram-positive bacteria by protein phosphorylation.Folia. Microbiol 42:171–178 [CrossRef]
    [Google Scholar]
  12. Fischer C., Geourjon C., Bourson C., Deutscher J. 1996; Cloning and characterization of the Bacillus subtilis prkA gene encoding a novel serine protein kinase.Gene. 16855–60 [CrossRef]
  13. Fouet A., Arnaud M., Klier A., Rapoport G. 1987; Bacillus subtilis sucrose- specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria. Proc Natl Acad Sci USA 84:8773–8777 [CrossRef]
    [Google Scholar]
  14. Galinier A., Haiech J., Kilhoffer M.-C., Jaquinod M., Stülke J., Deutscher J., Martin-Verstraete I. 1997; The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci USA 94:8439–8444 [CrossRef]
    [Google Scholar]
  15. Galinier A., Kravanja M., Engelmann R., Hengstenberg W., Kilhoffer M. C., Deutscher J., Haiech J. 1998; New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci USA 95:1823–1828 [CrossRef]
    [Google Scholar]
  16. Gibson T. G. 1984; Studies on the Epstein–Barr virus genome. PhD thesis University of Cambridge; Cambridge, UK:
  17. Glaser P., Kunst F., Arnaud M. & 14 other authors; 1993; Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol Microbiol 10:371–384 [CrossRef]
    [Google Scholar]
  18. Gonzy-Tréboul G., Zagorec M., Rain-Guion M. C., Steinmetz M. 1989; Phosphoenolpyruvate: sugar phosphotransferase system of Bacillus subtilis: nucleotide sequence of ptsX, ptsH and the 5′-end of ptsI and evidence for a ptsHI operon. Mol Microbiol 3:103–112 [CrossRef]
    [Google Scholar]
  19. Gunnewijk M. G. W., Postma P. W., Poolman B. 1999; Phosphorylation and functional properties of the IIA domain of the lactose transport protein of Streptococcus thermophilus. J Bacteriol 181:632–641
    [Google Scholar]
  20. Henstra S. A., Tuinhof M., Duurkens R. H., Robillard G. T. 1999; The Bacillus stearothermophilus mannitol regulator, MtlR, of the phosphotransferase system. J Biol Chem 2744754–4763 [CrossRef]
    [Google Scholar]
  21. Holmberg C., Beijer L., Rutberg B., Rutberg L. 1990; Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase ( glpD. J Gen Microbiol 136:2367–2375 [CrossRef]
    [Google Scholar]
  22. Kravanja M., Engelmann R., Dossonnet V., Blüggel M., Meyer H. E., Frank R., Galinier A., Deutscher J., Schnell N., Hengstenberg W. 1999; The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol 31:59–66 [CrossRef]
    [Google Scholar]
  23. Kunst F., Rapoport G. 1995; Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis . J Bacteriol 177:2403–2407
    [Google Scholar]
  24. Kunst F., Ogasawara N., Moszer I.148 others 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256
    [Google Scholar]
  25. Lapidus A., Galleron N., Sorokin A., Ehrlich S. D. 1997; Sequencing and functional annotation of the Bacillus subtilis genes in the 200 kb rrnBdnaB region. Microbiology 143:3431–3441 [CrossRef]
    [Google Scholar]
  26. Le Coq D., Lindner C., Krüger S., Steinmetz M., Stülke J. 1995; New β-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions, similar to those of BglF, its Escherichia coli homolog. J Bacteriol 177:1527–1535
    [Google Scholar]
  27. Lengeler J. W., Jahreis K., Wehmeier U. F. 1994; Enzymes II of the phosphoenolpyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta 11881–28 [CrossRef]
    [Google Scholar]
  28. Lereclus D., Arantès O. 1992; spbA locus ensures the segregational stability of pHT1030, a novel type of Gram-positive replicon. Mol Microbiol 6:35–46 [CrossRef]
    [Google Scholar]
  29. Macfayden L. P., Dorocicz I. R., Reizer J., Saier M. H. Jr, Redfield R. J. 1996; Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate: fructose phosphotransferase system. Mol Microbiol 21:941–952 [CrossRef]
    [Google Scholar]
  30. Martin-Verstraete I., Débarbouillé M., Klier A., Rapoport G. 1990; Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214:657–671 [CrossRef]
    [Google Scholar]
  31. Martin-Verstraete I., Charrier V., Stülke J., Galinier A., Erni B., Rapoport G., Deutscher J. 1998; Antagonistic effects of dual PTS- catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol 28:293–303 [CrossRef]
    [Google Scholar]
  32. Moszer I., Glaser P., Danchin A. 1995; SubtiList: a relational database for the Bacillus subtilis genome. Microbiology 141:261–268 [CrossRef]
    [Google Scholar]
  33. Nelson S. O., Schuitema A. R. J., Benne R., van der Ploeg L. H. T., Plijter J. S., Aan F., Postma P. W. 1984; Molecular cloning, sequencing, and expression of the crr gene: the structural gene for IIIGlc of the bacterial PEP: glucose phosphotransferase system. EMBO J 3:1587–1593
    [Google Scholar]
  34. Nguyen C. C., Saier M. H. Jr 1995; Phylogenetic analysis of the putative phosphorylation domain in the pyruvate kinase of Bacillus stearothermophilus. Res Microbiol 146:713–719 [CrossRef]
    [Google Scholar]
  35. Nobelmann B., Lengeler J. W. 1995; Sequence of the gat operon for galactitol utilization from a wild-type strain EC3132 of Escherichia coli. Biochim Biophys Acta 1262:69–72 [CrossRef]
    [Google Scholar]
  36. Paulsen I. T., Chauvaux S., Choi P., Saier M. H. Jr 1998; Characterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis: identification of a novel hexose: H+ symporter. J Bacteriol 180:498–504
    [Google Scholar]
  37. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  38. Powell B. S., Court D. L., Inada T., Nakamura Y., Michotey V., Cui X., Reizer A., Saier M. H. Jr, Reizer J. 1995; Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 270:4822–4839 [CrossRef]
    [Google Scholar]
  39. Pries A., Priefert H., Krüger N., Steinbüchel A. 1991; Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the poly(β-hydroxybutyric acid)-leaky phenotype which exhibit homology to ptsH and ptsI of Escherichia coli. J Bacteriol 173:5843–5853
    [Google Scholar]
  40. Reizer J., Reizer A. 1996; A voyage along the bases: novel phosphotransferase genes revealed by in silico analyses of the Escherichia coli genome. Res Microbiol 147:458–471 [CrossRef]
    [Google Scholar]
  41. Reizer J., Saier M. H. Jr 1997; Modular multidomain phosphoryl transfer proteins of bacteria. Curr Opin Struct Biol 7:407–415 [CrossRef]
    [Google Scholar]
  42. Reizer J., Novotny M. J., Stuiver I., Saier M. H. Jr 1984; Regulation of glycerol uptake by the phosphoenolpyruvate-sugar phosphotransferase system in Bacillus subtilis. J Bacteriol 159:243–250
    [Google Scholar]
  43. Reizer J., Paulsen I. T., Reizer A., Titgemeyer F., Saier M. H. Jr 1996; Novel phosphotransferase system genes revealed by bacterial genome analysis: the complete complement of pts genes in Mycoplasma genitalium. Microb Comp Genomics 1:151–164
    [Google Scholar]
  44. Reizer J., Hoischen C., Titgemeyer F., Rivolta C., Rabus R., Stülke J., Karamata D., Saier M. H. Jr, Hillen W. 1998; A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol 27:1157–1169 [CrossRef]
    [Google Scholar]
  45. Sadaie Y., Yata K. 1998; Functional analysis of the phoB/cotA region of the Bacillus subtilis chromosome containing the konjac glucomannan utilization operon. In Abstracts of the International Conference on Bacilli Japan, abstract P78
    [Google Scholar]
  46. Saier M. H. Jr, Reizer J. 1992; Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol 174:1433–1438
    [Google Scholar]
  47. Saier M. H. Jr, Reizer J. 1994; The bacterial phosphotransferase system: new frontiers 30 years later. Mol Microbiol 13:755–764 [CrossRef]
    [Google Scholar]
  48. Sakai H., Ohta T. 1993; Molecular cloning and nucleotide sequence of the gene for pyruvate kinase of Bacillus stearothermophilus and the production of the enzyme in Escherichia coli. Evidence that the genes for phosphofructokinase and pyruvate kinase constitute an operon. Eur J Biochem 211:851–859 [CrossRef]
    [Google Scholar]
  49. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  50. Schnetz K., Stülke J., Gertz S., Krüger S., Krieg M., Hecker M., Rak B. 1996; LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178:1971–1979
    [Google Scholar]
  51. Schöck F., Dahl M. K. 1996; Analysis of DNA flanking the treA gene of Bacillus subtilis reveals genes encoding a putative specific enzyme IITre and a potential regulator of the trehalose operon. Gene 175:59–63 [CrossRef]
    [Google Scholar]
  52. Steinmetz M., Le Coq D., Aymerich S. 1989; Induction of saccharolytic enzymes by sucrose in Bacillus subtilis: evidence for two partially interchangeable regulatory pathways. J Bacteriol 171:1519–1523
    [Google Scholar]
  53. Stülke J., Hillen W. 1998; Coupling physiology and gene regulation in bacteria: the phosphotransferase sugar uptake system delivers the signals. Naturwissenschaften 85:583–592 [CrossRef]
    [Google Scholar]
  54. Stülke J., Martin-Verstraete I., Charrier V., Klier A., Deutscher J., Rapoport G. 1995; The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177:6928–6936
    [Google Scholar]
  55. Stülke J., Martin-Verstraete I., Zagorec M., Rose M., Klier A., Rapoport G. 1997; Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25:65–78 [CrossRef]
    [Google Scholar]
  56. Stülke J., Arnaud M., Rapoport G., Martin-Verstraete I. 1998; PRD – a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 28:865–874 [CrossRef]
    [Google Scholar]
  57. Sutrina S. L., Reddy P., Saier M. H. Jr, Reizer J. 1990; The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J Biol Chem 265:18581–18589
    [Google Scholar]
  58. Thompson J., Pikis A., Ruvinov S. B., Henrissat B., Yamamoto H., Sekiguchi J. 1998; The gene glvA of Bacillus subtilis 168 encodes a metal-requiring, NAD(H)-dependent 6-phospho-α-glucosidase. J Biol Chem 273:27347–27356 [CrossRef]
    [Google Scholar]
  59. Titgemeyer F., Walkenhorst J., Reizer J., Stuiver M. H., Cui X., Saier M. H. Jr 1995; Identification and characterization of phosphoenolpyruvate: fructose phosphotransferase systems in three Streptomyces species. Microbiology 141:51–58 [CrossRef]
    [Google Scholar]
  60. Tobisch S., Glaser P., Krüger S., Hecker M. 1997; Identification and characterization of a new β-glucoside utilization system in Bacillus subtilis . J Bacteriol 179:496–506
    [Google Scholar]
  61. Tobisch S., Stülke J., Hecker M. 1999; Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. J Bacteriol 181:4995–5003
    [Google Scholar]
  62. Tortosa P., Aymerich S., Lindner C., Saier M. H. Jr., Reizer J., Le Coq D. 1997; Multiple phosphorylation of SacY, a Bacillus subtilis antiterminator negatively controlled by the phosphotransferase system. J Biol Chem 272:17230–17237 [CrossRef]
    [Google Scholar]
  63. Trieu-Cuot P., Courvalin P. 1983; Nucleotide sequence of Streptococcus faecalis plasmid gene encoding the 3′5′′-aminoglycoside phosphotransferase type III. Gene 23331–341 [CrossRef]
    [Google Scholar]
  64. Wehtje C., Beijer L., Nilsson R. P., Rutberg B. 1995; Mutations in the glycerol kinase gene restore the ability of a ptsGHI mutant of Bacillus subtilis to grow on glycerol. Microbiology 141:1193–1198 [CrossRef]
    [Google Scholar]
  65. Yamamoto H., Uchiyama S., Fajar A. N., Ogasawara N., Sekiguchi J. 1996; Determination of a 12 kb nucleotide sequence around the 76° region of the Bacillus subtilis chromosome. Microbiology 142:1417–1421 [CrossRef]
    [Google Scholar]
  66. Zagorec M., Postma P. 1992; Cloning and nucleotide sequence of the ptsG gene of Bacillus subtilis. Mol Gen Genet 234:325–328
    [Google Scholar]
  67. Zhang J. K., Aronson A. 1994; A Bacillus subtilis bglA gene encoding phospho-β-glucosidase is inducible and closely linked to a NADH dehydrogenase-encoding gene. Gene 140:85–90 [CrossRef]
    [Google Scholar]
  68. Zhu P.-P., Reizer J., Reizer A., Peterkofsky A. 1993; Unique monocistronic operon ( ptsH) in Mycoplasma capricolum encoding the phosphocarrier protein, HPr, of the phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem 268:26531–26540
    [Google Scholar]
  69. Zukowski M. M., Miller L., Cogswell P., Chen K., Aymerich S., Steinmetz M. 1990; Nucleotide sequence of the sacS locus of Bacillus subtilis reveals the presence of two regulatory genes. Gene 90:153–155 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3419
Loading
/content/journal/micro/10.1099/00221287-145-12-3419
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error