1887

Abstract

The authors have previously isolated a novel extremely halophilic archaeon, BIp, from Austrian rock salt deposited about 250 million years ago. In this study they compared strain BIp with two other halococci isolated independently from geographically distant salt deposits of similar age, and with two recent isolates (N1 and H2) from the same site as strain Blp. Strain BG2/2 was from a salt mine in Germany and strain Br3 from a halite deposit in England; both resembled BIp in cellular and colonial morphology. Strains BIp, BG2/2 and Br3 had identical 16S rRNA sequences, very similar whole-cell protein patterns, which were different from those of other halococci, similar G+C contents and identical sequences in a 108-base insertion in their 5S rRNA gene. Other similarities included composition and relative abundances of polar lipids, antibiotic susceptibility, enzymic activities and Fourier-transform infrared spectra. Strains N1 and H2 showed similar morphology, whole-cell protein patterns and biochemical characteristics as strains BIp, Br3 and BG2/2. Their partial 16S rRNA sequences (682 and 641 bases, respectively) were indistinguishable from those of strains BIp, Br3 and BG2/2. Therefore strains N1 and H2 can be considered as reisolates of which were obtained 8 years after the first samples were taken from that mine. The results presented suggest that viable halophilic archaea, which belong to the same species, occur in widely separated evaporite locations of similar geological age, and support the notion that these halophilic isolates from subterranean salt deposits may be the remnants of populations which inhabited ancient hypersaline seas.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3565
1999-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453565a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3565&mimeType=html&fmt=ahah

References

  1. Amy P. S., Haldeman D. L.editors 1997 The Microbiology of the Terrestrial Deep Subsurface Boca Raton, FL: CRC Lewis Publishers;
    [Google Scholar]
  2. Bibo F.-J., Söngen R., Fresenius R. E. 1983; Vermehrungsf ähige Mikroorganismen in Steinsalz aus primären Lagerstätten. Kali und Steinsalz August 1983:367–373
    [Google Scholar]
  3. Cano R. J., Borucki M. K. 1995; Revival and identification of bacterial spores in 25- to 40-million year old Dominician amber. Science 268:1060–1064 [CrossRef]
    [Google Scholar]
  4. Cashion P., Holder-Franklin, M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  5. Collins M. D., Goodfellow M., Minnikin D. E. 1980; Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 118:29–37
    [Google Scholar]
  6. Dang P. N., Dang T. C. H., Lai T. H., Stan-Lotter H. 1996; Desulfovibrio vietnamensis sp.nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:385–392 [CrossRef]
    [Google Scholar]
  7. Daniels C. J., Hofman J. D., MacWilliam J. G., Doolittle W. F., Woese C. R., Luehrsen K. R., Fox G. E. 1985; Sequence of 5S ribosomal RNA gene regions and their products in the archaebacterium Halobacterium volcanii. Mol Gen Genet 198:270–274 [CrossRef]
    [Google Scholar]
  8. Denner E. B. M., McGenity T. J., Busse H.-J., Grant W. D., Wanner G., Stan-Lotter H. 1994; Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int J Syst Bacteriol 44:774–780 [CrossRef]
    [Google Scholar]
  9. DeSalle R., Gatesy J., Wheeler W., Grimaldi D. 1992; DNA sequences from a fossil termite in oligo-miocene amber and their phylogenetic implications. Science 257:1933–1936 [CrossRef]
    [Google Scholar]
  10. Dombrowski H. J. 1963; Bacteria from palaeozoic salt deposits. Ann NY Acad Sci 108:477–484
    [Google Scholar]
  11. Felsenstein J. 1993 phylip (Phylogeny Inference Package), version 3.5.1 Seattle: Department of Genetics, University of Washington;
    [Google Scholar]
  12. Grant W. D., Gemmell R. T., McGenity T. J. 1998; Halobacteria: the evidence for longevity. Extremophiles 2:279–287 [CrossRef]
    [Google Scholar]
  13. Helm D., Labischinski H., Schallehn G., Naumann D. 1991a; Classification and identification of bacteria by Fourier-transform infrared spectroscopy. . J Gen Microbiol 137:69–79 [CrossRef]
    [Google Scholar]
  14. Helm D., Labischinski H., Naumann D. 1991b; Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries: a stepwise correlation approach. J Microbiol Methods 14:127–142 [CrossRef]
    [Google Scholar]
  15. Jackman P. J. H. 1987; Microbial systematics based on electrophoretic whole-cell protein patterns. Methods Microbiol 19:209–225
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–132Edited by Munro H. N. . New York: Academic Press;
    [Google Scholar]
  17. Kennedy M. J., Reader S. L., Swiercynski L. M. 1994; Preservation records of microorganisms: evidence of the tenacity of life. . Microbiology 140:2513–2529 [CrossRef]
    [Google Scholar]
  18. Kersters K., De Ley J. 1980; Classification and identification of bacteria by electrophoresis of their proteins. In Microbiological Classification and Identification pp. 273–297Edited by Goodfellow M. , Board R. G. . New York: Academic Press;
    [Google Scholar]
  19. Kjelleberg S. 1993 Starvation in BacteriaEdited by Kjelleberg S. New York & London: Plenum;
    [Google Scholar]
  20. Klaus W. 1974; Neue Beiträge zur Datierung von Evaporiten des Oberperm. . Carinthia II, 164:Jahrg8479–85
    [Google Scholar]
  21. Kostrikina N. A., Zvyagintseva I. S., Duda V. I. 1991; Cytological peculiarities of some extremely halophilic soil archaeobacteria. Arch Microbiol 156:344–349 [CrossRef]
    [Google Scholar]
  22. Leffers H., Kjems J., Østergaard L., Larsen N., Garrett R. A. 1987; Evolutionary relationships amongst archaebacteria: comparative study of 23S ribosomal RNAs of a sulphur-dependent extreme thermophile, an extreme halophile and a thermophilic methanogen. J Mol Biol 195:43–61 [CrossRef]
    [Google Scholar]
  23. Lodwick D., McGenity T. J., Grant W. D. 1994; The phylogenetic position of the haloalkaliphilic archaeon Natronobacterium magadii , determined from its 23S ribosomal RNA sequence. Syst Appl Microbiol 17:402–404 [CrossRef]
    [Google Scholar]
  24. Luehrsen K. R., Nicholson D. E., Eubanks D. C., Fox G. E. 1981; An archaebacterial 5S rRNA contains a long insertion sequence. Nature 293:755–756 [CrossRef]
    [Google Scholar]
  25. McGenity T. J., Grant W. D. 1995; Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. . Syst Appl Microbiol 18:237–243 [CrossRef]
    [Google Scholar]
  26. McGenity T. J., Gemmell R. T., Grant W. D. 1998; Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol 48:1187–1196 [CrossRef]
    [Google Scholar]
  27. Maidak B. L., Olsen G. J., Larsen N., McCaughey M. J., Woese C. R. 1996; The ribosomal database project (RDP). Nucleic Acids Res 24:82–85 [CrossRef]
    [Google Scholar]
  28. Marguet E., Forterre P. 1998; Protection of DNA by salts against thermodegradation at temperatures typical for hyperthermophiles. Extremophiles 2:115–122 [CrossRef]
    [Google Scholar]
  29. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  30. Montero C. G., Ventosa A., Rodriguez-Valera F., Kates M., Moldoveanu N., Ruiz-Berraquero F. 1989; Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. Syst Appl Microbiol 12:167–171 [CrossRef]
    [Google Scholar]
  31. Morita R. Y. 1997 Bacteria in Oligotrophic Environments. Starvation-Survival Lifestyle New York: Chapman & Hall;
    [Google Scholar]
  32. Nguyen B. H., Denner E. B. M., Dang T. C. H., Wanner G., Stan-Lotter H. 1999; Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil- producing well. Int J Syst Bacteriol 49:367–375 [CrossRef]
    [Google Scholar]
  33. Norton C. F., Grant W. D. 1988; Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134:1365–1373
    [Google Scholar]
  34. Norton C. F., McGenity T. J., Grant W. D. 1993; Archaeal halophiles (halobacteria) from two British salt mines. J Gen Microbiol 139:1077–1081 [CrossRef]
    [Google Scholar]
  35. Pak E., Schauberger O. 1981; Die geologische Datierung der ostalpinen Salzlagerstätten mittels Schwefelisotopenuntersuchungen. Verh Geol B-A 1981:185–192
    [Google Scholar]
  36. Pitcher D. G., Saunders N. A., Owens R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  37. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. . Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  38. Reiser R., Tasch P. 1960; Investigation of the viability of osmophile bacteria of great geological age. Trans Kans Acad Sci 63:31–34 [CrossRef]
    [Google Scholar]
  39. Roedder E. 1984; The fluids in salt. . Am Mineral 69:413–439
    [Google Scholar]
  40. Ross H. N., M., Grant W. D., Harris J. E. 1985; Lipids in archaebacterial taxonomy. In Chemical Methods in Bacterial Systematics pp. 289–300Edited by Goodfellow M. , Minnikin D. E. . London: Academic Press;
    [Google Scholar]
  41. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654Edited by Gerhardt P., Murray R. G. E. , Wood W. A. , Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Stan-Lotter H., Lang F. J. Jr, Hochstein L. I. 1989; Electrophoresis and isoelectric focusing of whole-cell and membrane proteins from the extremely halophilic archaebacteria. Appl Theor Electroph 1:147–153
    [Google Scholar]
  45. Stan-Lotter H., Sulzner M., Egelseer E., Norton C. F., Hochstein L. I. 1993; Comparison of membrane ATPases from extreme halophiles isolated from ancient salt deposits. Origins Life Evol Biosph 23:53–64 [CrossRef]
    [Google Scholar]
  46. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  47. Tomlinson G. A., Hochstein L. I. 1976; Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 22:587–591 [CrossRef]
    [Google Scholar]
  48. Vauterin L., Swings J., Kersters K. 1993; Protein electrophoresis and classification. In Handbook of New Bacterial Systematics pp. 251–280Edited by Goodfellow M., O’Donnell A. G. London: Academic Press;
    [Google Scholar]
  49. Ventosa A., Guiterrez M. C., Kamekura M., Kamekura-Smith M. L. 1999; Proposal for the transfer of Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov. comb. nov. Int J Syst Bacteriol 49:131–136 [CrossRef]
    [Google Scholar]
  50. Visuvanathan S., Moss V. S., Stanford J. L., Hermon-Taylor J., McFadden J. J. 1989; Simple enzymatic method for isolation of DNA from diverse bacteria. J Microbiol Methods 10:59–64 [CrossRef]
    [Google Scholar]
  51. Warrington G. 1970; The ′Keuper′ series of the British Trias in the Northern Irish Sea and neighbouring areas. . Nature 226:254–256 [CrossRef]
    [Google Scholar]
  52. Zharkov M. A. 1981 History of Paleozoic Salt Accumulation Berlin: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3565
Loading
/content/journal/micro/10.1099/00221287-145-12-3565
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error