1887

Abstract

The external pH appeared to be the main factor governing oxalic acid production by . A glucose-oxidase-negative mutant produced substantial amounts of oxalic acid as long as the pH of the culture was 3 or higher. When pH was decreased below 2, no oxalic acid was formed. The activity of oxaloacetate acetylhydrolase (OAH), the enzyme believed to be responsible for oxalate formation in , correlated with oxalate production. OAH was purified from and characterized. OAH cleaves oxaloacetate to oxalate and acetate, but never accumulated any acetate in the culture broth. Since an mutant, which lacks acetyl-CoA synthase, did produce some acetate, wild-type is apparently able to catabolize acetate sufficiently fast to prevent its production. An mutant, , previously isolated in a screen for strains deficient in extracellular protease expression, was shown here to be oxalate non-producing. The mutant lacked OAH, implying that OAH is the only enzyme involved in oxalate production in . In a traditional citric acid fermentation low pH and absence of Mn are prerequisites. Remarkably, a strain lacking both glucose oxidase () and OAH () produced citric acid from sugar substrates in a regular synthetic medium at pH 5 and under these conditions production was completely insensitive to Mn.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2569
1999-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452569a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2569&mimeType=html&fmt=ahah

References

  1. Bergmeyer H. U. 1958; Methods of Enzymatic Analysis. vols VI and VII Deerfield Beach FL: VCH;
    [Google Scholar]
  2. Bos C. J., Debets A. J. M., Swart K., Huybers A., Kobus G., Slakhorst S. M. 1988; Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger. Curr Genet 14:437–443 [CrossRef]
    [Google Scholar]
  3. Cleland W. W., Johnson M. J. 1956; Studies on the formation of oxalic acid by Aspergillus niger.. J Biol Chem 220:595–606
    [Google Scholar]
  4. Dutton M. V., Evans C. S. 1996; Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895 [CrossRef]
    [Google Scholar]
  5. Goosen T., Bloemheuvel G., Gysler C., de Bie D. A., Van den Broek H. W. J., Swart K. 1987; Transformation of Aspergillus niger using the homologous orotidine-5′-phosphate-decarboxylase gene. Curr Genet 11:499–503 [CrossRef]
    [Google Scholar]
  6. Hayaishi O., Shimazono H., Katagiri M., Saito Y. 1956; Enzymatic formation of oxalate and acetate from oxaloacetate. J Am Chem Soc 78:5126–5127
    [Google Scholar]
  7. Houck D. R., Inamine E. 1987; Oxalic acid biosynthesis and oxaloacetate acetylhydrolase activity in Streptomyces cattleya.. Arch Biochem Biophys 259:58–65 [CrossRef]
    [Google Scholar]
  8. Kuan L.-C., Tien M. 1993; Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin degradation. Proc Natl Acad Sci USA 90:1242–1246 [CrossRef]
    [Google Scholar]
  9. Kubicek C. P. 1987; The role of the citric acid cycle in fungal organic acid fermentations. Biochem Soc Symp 54:113–126
    [Google Scholar]
  10. Kubicek C. P., Schreferl-Kunar G., Wöhrer W., Röhr M. 1988; Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger.. Appl Environ Microbiol 54:633–637
    [Google Scholar]
  11. Kusters-van Someren M. A., Harmsen J. A. M., Kester, H. C. M., Visser J. 1991; Structure of the Aspergillus niger pelA gene and its expression in Aspergillus niger and Aspergillus nidulans.. Curr Genet 20:293–299 [CrossRef]
    [Google Scholar]
  12. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  13. Lenz H., Wunderwald P., Eggerer H. 1976; Partial purification and some properties of oxalacetase from Aspergillus niger. Eur J Biochem 63:225–236
    [Google Scholar]
  14. Mattey M. 1992; The production of organic acids. CRC Crit Rev Biotechnol 12:87–132 [CrossRef]
    [Google Scholar]
  15. Micales J. A. 1994; Induction of oxalic acid by carbohydrate and nitrogen sources in the brown-rot fungus Postia placenta.. Mater Org 28:197–207
    [Google Scholar]
  16. Müller H.-M. 1965; Untersuchungen zum Saürestoffwechsel von Aspergillus niger. I. Mitteilung. Der Einfluss des C/N-Verhältnisses in der Ausgangs-nährlsung auf den pH-Wert und die Oxalsaüreanhäufung. Arch Microbiol 52:251–265
    [Google Scholar]
  17. Müller H.-M. 1975; Oxalate accumulation from citrate by Aspergillus niger. I. Biosynthesis of oxalate from its ultimate precursor. Arch Microbiol 103:185–189 [CrossRef]
    [Google Scholar]
  18. Murphy R. J., Levi J. F. 1983; Production of copper oxalate by some copper tolerant fungi. Trans Br Mycol Soc 54:165–168
    [Google Scholar]
  19. Pontecorvo G., Roper J. A., Hemmons L. M., MacDonald K. D., Bufton A. W. J. 1953; The genetics of Aspergillus nidulans.. Adv Genet 5:141–238
    [Google Scholar]
  20. Ruijter G. J. G., Panneman H., Visser J. 1997; Overexpression of phosphofructokinase and pyruvate kinase in citric acid producing Aspergillus niger. Biochim Biophys Acta 1334:317–326 [CrossRef]
    [Google Scholar]
  21. Sandeman R. A., Hynes M. J. 1989; Isolation of the facA (acetyl-CoenzymeA synthase) and acuE (malate synthase) genes from Aspergillus nidulans.. Mol Gen Genet 218:87–92 [CrossRef]
    [Google Scholar]
  22. Sealy-Lewis H. M. 1994; A new selection method for isolating mutants defective in acetate utilisation in Aspergillus nidulans. Curr Genet 25:47–48 [CrossRef]
    [Google Scholar]
  23. Sealy-Lewis H. M., Fairhurst V. 1998; Isolation of mutants deficient in acetyl-CoA synthetase and a possible regulator of acetate induction in Aspergillus niger.. Microbiology 144:1895–1900 [CrossRef]
    [Google Scholar]
  24. Shanta T., Rati E. R. 1990; Isolation and characterization of an aflatoxin-inhibiting metabolite from Aspergillus niger.. Curr Sci 59:326–327
    [Google Scholar]
  25. Strasser H., Burgstaller W., Schinner F. 1994; High-yield production of oxalic acid for metal leaching processes by Aspergillus niger.. FEMS Microbiol Lett 119:365–370 [CrossRef]
    [Google Scholar]
  26. Tanaka K., Nonaka F. 1981; Synergistic action of oxalic acid and pectinolytic enzyme on the rot of onion bulb caused by Aspergillus niger.. Ann Phytopathol Soc Japan 47:166–174 [CrossRef]
    [Google Scholar]
  27. Van de Merbel N. C., Ruijter G. J. G., Lingeman, H., Brinkman, U. A. Th., Visser J. 1994; An automated monitoring system using on-line ultrafiltration and column liquid chromatography for Aspergillus niger fermentations. Appl Microbiol Biotechnol 41:658–663 [CrossRef]
    [Google Scholar]
  28. Van den Hombergh J. P. T. W., Van de Vondervoort P. J. I., Van der Heijden N. C. B. A., Visser J. 1995; New protease mutants in Aspergillus niger result in strongly reduced in vitro degradation of target proteins; genetic and biochemical characterization of seven complementation groups. Curr Genet 28:299–308 [CrossRef]
    [Google Scholar]
  29. Van der Veen P., Flipphi M. J. A., Voragen A. G. J., Visser J. 1991; Induction, purification and characterisation of arabinases produced by Aspergillus niger.. Arch Microbiol 157:23–28 [CrossRef]
    [Google Scholar]
  30. Vishniac W., Santer M. 1957; The thiobacilli. Bacteriol Rev 21:195–213
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2569
Loading
/content/journal/micro/10.1099/00221287-145-9-2569
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error