1887

Abstract

Trehalose is present as a free disaccharide in the cytoplasm of mycobacteria and as a component of cell-wall glycolipids implicated in tissue damage associated with mycobacterial infection. To obtain an overview of trehalose metabolism, we analysed data from the genome project and identified ORFs with homology to genes encoding enzymes from three trehalose biosynthesis pathways previously characterized in other bacteria. Functional assays using mycobacterial extracts and recombinant enzymes derived from these ORFs demonstrated that mycobacteria can produce trehalose from glucose 6-phosphate and UDP-glucose (the OtsA–OtsB pathway) from glycogen-like α(1→4)-linked glucose polymers (the TreY–TreZ pathway) and from maltose (the TreS pathway). Each of the pathways was found to be active in both rapid-growing and slow-growing BCG. The presence of a disrupted gene in suggests that this pathway is not functional in this organism. The presence of multiple biosynthetic pathways indicates that trehalose plays an important role in mycobacterial physiology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-1-199
2000-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/1/1460199a.html?itemId=/content/journal/micro/10.1099/00221287-146-1-199&mimeType=html&fmt=ahah

References

  1. Bardarov S., Kriakov J., Carriere C., Yu S., Vaamonde C., McAdam R., Bloom B., Hatfull G., Jacobs W. J. 1997; Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 94:10961–10966 [CrossRef]
    [Google Scholar]
  2. Belisle J. T., Vissa V. D., Sievert T., Takayama K., Brennan P. J., Besra G. S. 1997; Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–1422 [CrossRef]
    [Google Scholar]
  3. Besra G. S., Chatterjee D. 1994; Lipids and carbohydrates of Mycobacterium tuberculosis. In Tuberculosis: Pathogenesis, Protection and Control pp. 285–306Edited by Bloom B. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Bruton C. J., Plaskitt K. A., Chater K. F. 1995; Tissue-specific glycogen branching isoenzymes in a multicellular prokaryote, Streptomyces coelicolor A3(2). Mol Microbiol 18:89–99 [CrossRef]
    [Google Scholar]
  5. Cole S., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  6. Csonka L. N., Hanson A. D. 1991; Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606 [CrossRef]
    [Google Scholar]
  7. De Smet K. A. L., Kempsell K. E., Gallagher A., Duncan K., Young D. B. 1999; Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145:3177–3184
    [Google Scholar]
  8. De Virgilio C., Hottiger T., Dominguez J., Boller T., Wiemken A. 1994; The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219:179–186 [CrossRef]
    [Google Scholar]
  9. Elbein A. D., Mitchell M. 1973; Levels of glycogen and trehalose in Mycobacterium smegmatis and the purification and properties of the glycogen synthetase. J Bacteriol 113:863–873
    [Google Scholar]
  10. Helling R. B. 1998; Pathway choice in glutamate synthesis in Escherichia coli. J Bacteriol 180:4571–4575
    [Google Scholar]
  11. Kaasen I., Falkenberg P., Styrvold O. B., Strom A. R. 1992; Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by katF (AppR). J Bacteriol 174, 889–898 (published erratum appears in. J Bacteriol 174:3422
    [Google Scholar]
  12. Kaasen I., McDougall J., Strom A. R. 1994; Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene 145:9–15 [CrossRef]
    [Google Scholar]
  13. Marcotta E. M., Pellegrini M., Ng H.-L., Rice D. W., Yeates T. O., Eisenberg D. 1999; Detecting protein function and protein–protein interactions from genome sequences. Science 285:751–753 [CrossRef]
    [Google Scholar]
  14. Maruta K., Hattori K., Nakada T., Kubota M., Sugimoto T., Kurimoto M. 1996a; Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim Biophys Acta 1289:10–13 [CrossRef]
    [Google Scholar]
  15. Maruta K., Hattori K., Nakada T., Kubota M., Sugimoto T., Kurimoto M. 1996b; Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci Biotechnol Biochem 60:717–720 [CrossRef]
    [Google Scholar]
  16. Maruta K., Mitsuzumi H., Nakada T., Kubota M., Chaen H., Fukuda S., Sugimoto T., Kurimoto M. 1996c; Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291:177–181 [CrossRef]
    [Google Scholar]
  17. Matula M., Mitchell M., Elbein A. D. 1971; Partial purification and properties of a highly specific trehalose phosphate phosphatase from Mycobacterium smegmatis. J Bacteriol 107:217–222
    [Google Scholar]
  18. Moxon E. R. 1995; Whole genome sequencing of pathogens: a new era in microbiology. Trends Microbiol 3:335–337 [CrossRef]
    [Google Scholar]
  19. Nakada T., Maruta K., Tsusaki K., Kubota M., Chaen H., Sugimoto T., Kurimoto M., Tsujisaka Y. 1995; Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci Biotechnol Biochem 59:2210–2214 [CrossRef]
    [Google Scholar]
  20. Nishimoto T., Nakano M., Nakada T., Chaen H., Fukuda S., Sugimoto T., Kurimoto M., Tsujisaka Y. 1996; Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci Biotechnol Biochem 60:640–644 [CrossRef]
    [Google Scholar]
  21. Nossal N. G., Heppel L. A. 1966; The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem 241:3055–3062
    [Google Scholar]
  22. Pablos-Mendez A., Raviglione M. C., Laszlo A.8 other authors 1998; Global surveillance for antituberculosis-drug resistance, 1994–1997. World Health Organization–International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance. N Engl J Med 338:1641–1649 [CrossRef]
    [Google Scholar]
  23. Pan Y. T., Mitchell M., Elbein A. D. 1978; Studies on the trehalose-phosphate synthase of Mycobacterium smegmatis: binding of heparin to the enzyme. Arch Biochem Biophys 186:392–400 [CrossRef]
    [Google Scholar]
  24. Pan Y. T., Drake R. R., Elbein A. D. 1996; Trehalose-P synthase of mycobacteria: its substrate specificity is affected by polyanions. Glycobiology 6:453–461 [CrossRef]
    [Google Scholar]
  25. Parish T., Stoker N. G. 1997; Development and use of a conditional antisense mutagenesis system in mycobacteria. FEMS Microbiol Lett 154:151–157 [CrossRef]
    [Google Scholar]
  26. Pelicic V., Reyrat J. M., Gicquel B. 1998; Genetic advances for studying Mycobacterium tuberculosis pathogenicity. Mol Microbiol 28:413–420 [CrossRef]
    [Google Scholar]
  27. Poolman B., Glaasker E. 1998; Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29:397–407 [CrossRef]
    [Google Scholar]
  28. Prinz W. A., Spiess C., Ehrmann M., Schierle C., Beckwith J. 1996; Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase. EMBO J 15:5209–5217
    [Google Scholar]
  29. Ranade N., Vining L. C. 1993; Accumulation of intracellular carbon reserves in relation to chloramphenicol biosynthesis by Streptomyces venezuelae. Can J Microbiol 39:377–383 [CrossRef]
    [Google Scholar]
  30. Reinders A., Burckert N., Hohmann S., Thevelein J. M., Boller T., Wiemken A., De Virgilio C. 1997; Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24:687–695 [CrossRef]
    [Google Scholar]
  31. Rimmele M., Boos W. 1994; Trehalose-6-phosphate hydrolase of Escherichia coli. J Bacteriol 176:5654–5664
    [Google Scholar]
  32. Romeo T., Kumar A., Preiss J. 1988; Analysis of the Escherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes. Gene 70:363–376 [CrossRef]
    [Google Scholar]
  33. Strom A. R., Kaasen I. 1993; Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210 [CrossRef]
    [Google Scholar]
  34. Tsusaki K., Nishimoto T., Nakada T., Kubota M., Chaen H., Sugimoto T., Kurimoto M. 1996; Cloning and sequencing of trehalose synthase gene from Pimelobacter sp. R48. Biochim Biophys Acta 1290:1–3 [CrossRef]
    [Google Scholar]
  35. Tsusaki K., Nishimoto T., Nakada T., Kubota M., Chaen H., Fukuda S., Sugimoto T., Kurimoto M. 1997; Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC 33923. Biochim Biophys Acta 1334:28–32 [CrossRef]
    [Google Scholar]
  36. Wehrmann A., Phillipp B., Sahm H., Eggeling L. 1998; Different modes of diaminopimelate synthesis and their role in cell wall integrity: a study with Corynebacterium glutamicum. J Bacteriol 180:3159–3165
    [Google Scholar]
  37. Winder F. G., Tighe J. J., Brennan P. J. 1972; Turnover of acylglucose, acyltrehalose and free trehalose during growth of Mycobacterium smegmatis on glucose. J Gen Microbiol 73:539–546 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-1-199
Loading
/content/journal/micro/10.1099/00221287-146-1-199
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error