1887

Abstract

Almost all eukaryotic mRNAs are capped at their 5′-terminus. Capping is crucial for stability, processing, nuclear export and efficient translation of mRNA. We studied the phenotypic effects elicited by depleting a strain of mRNA 5′-guanylyltransferase (mRNA capping enzyme; CGT1). Construction of a Cgt1-deficient mutant was achieved by URA-blaster-mediated genetic disruption of one allele of the gene, which was localized on chromosome III. The resulting heterozygous mutant exhibited an aberrant colony morphology resembling the ‘irregular wrinkle’ phenotype typically obtained from a normal strain upon mild UV treatment. Its level of mRNA was reduced two- to fivefold compared to the parental strain. Proteome analysis revealed a large number of differentially expressed proteins confirming the expected pleiotropic effect of disruption. The disrupted strain was significantly more resistant to hygromycin B, an antibiotic which decreases translational fidelity, and showed increased resistance to heat stress. Proteome analysis revealed a 50-fold overexpression of Ef-1αp and a more than sevenfold overexpression of the cell-wall heat-shock protein Ssa2p. Compared to a reference strain, the / heterozygote was equally virulent for mice and guinea pigs when tested in an intravenous infection model of disseminated candidiasis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-353
2000-02-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460353a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-353&mimeType=html&fmt=ahah

References

  1. Blackstock W. P., Weir M. P. 1999; Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17:121–127 [CrossRef]
    [Google Scholar]
  2. Brockstedt E., Rickers A., Kostka S., Laubersheimer A., Dorken B., Wittmann-Liebold B., Bommert K., Otto A. 1998; Identification of apoptosis-associated proteins in a human Burkitt lymphoma cell line: cleavage of heterogeneous nuclear ribonucleoprotein A1 by caspase 3. J Biol Chem 273:28057–28064 [CrossRef]
    [Google Scholar]
  3. Buffo J., Herman M. A., Soll D. R. 1984; A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia 85:21–30 [CrossRef]
    [Google Scholar]
  4. Dinman J. D., Kinzy T. G. 1997; Translational misreading: mutations in translation elongation factor 1α differentially affect programmed ribosomal frameshifting and drug sensitivity. RNA 3:870–881
    [Google Scholar]
  5. Eckerskorn C., Jungblut P., Mewes W., Klose J., Lottspeich L. 1988; Identification of mouse brain proteins after two-dimensional electrophoresis and electroblotting by microsequence analysis and amino acid composition analysis. Electrophoresis 9:830–838 [CrossRef]
    [Google Scholar]
  6. Ellis R. J., van der Vies S. M. 1991; Molecular chaperones. Ann Rev Biochem 60:321–347 [CrossRef]
    [Google Scholar]
  7. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728
    [Google Scholar]
  8. Fresco L. D., Buratowski S. 1996; Conditional mutants of the yeast mRNA capping enzyme show that the cap enhances but is not required for mRNA splicing. RNA 2:584–596
    [Google Scholar]
  9. Furuichi Y., Miura K. 1975; A blocked structure at the 5′ terminus of mRNA from cytoplasmic polyhedrosis virus. Nature 253:374–375 [CrossRef]
    [Google Scholar]
  10. Furuichi Y., Morgan M., Muthukrishnan S., Shatkin A. J. 1975; Methylated, blocked 5′ termini in HeLa cell mRNA. Proc Natl Acad Sci USA 72:362–366 [CrossRef]
    [Google Scholar]
  11. Gerring S. L., Connelly C., Hieter P. 1991; Positional mapping of genes by chromosome blotting and chromosome fragmentation. Methods Enzymol 194:57–77
    [Google Scholar]
  12. Giaever G., Shoemaker D. D., Jones T. W., Liang H., Winzeler E. A., Astromoff A., Davis R. W. 1999; Genomic profiling of drug sensitivities via induced haploinsufficiency. Nature Genet 21:278–283 [CrossRef]
    [Google Scholar]
  13. Gonzalez A., Jiménez A., Vazquez D., Davies J. E., Schindler D. 1978; Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes. Biochim Biophys Acta 521:459–469 [CrossRef]
    [Google Scholar]
  14. Groll A. H., Piscitelli S. C., Walsh T. J. 1998; Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharmacol 44:343–501
    [Google Scholar]
  15. Heid C. A., Stevens J., Livak K. J., Williams P. M. 1996; Real time quantitative PCR. Genome Methods 6:986–994
    [Google Scholar]
  16. Henzel W. J., Billeci T. M., Stultz J. T., Wong S. C., Grimley C., Wanatabe C. 1993; Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA 90:5011–5015 [CrossRef]
    [Google Scholar]
  17. Heukeshoven J., Dernick R. 1985; Increased sensitivity for Coomassie staining of sodium dodecyl sulfate-polyacrylamide gels using PhastSyst Development Unit. Electrophoresis 6:103–112 [CrossRef]
    [Google Scholar]
  18. Hinnebusch A. G., Liebman S. W. 1991; Translation elongation in yeast. In The Molecular Biology of the Yeast SaccharomycesEdited by Broach J. R., Pringle J. R., Jones E. W. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Ignatovich O., Cooper M., Kulesza H. M., Beggs J. D. 1995; Cloning and characterization of the gene encoding the ribosomal protein S5 of Saccharomyces cerevisiae. Nucleic Acids Res 23:4616–4619 [CrossRef]
    [Google Scholar]
  20. Klose J., Kobalz U. 1995; Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059 [CrossRef]
    [Google Scholar]
  21. Kovalchuke O., Kambampati R., Pladies E., Chakraburty K. 1998; Competition and cooperation amongst yeast elongation factors. Eur J Biochem 258:986–993 [CrossRef]
    [Google Scholar]
  22. Lay J., Henry L. K., Clifford J., Koltin Y., Bulawa C. E., Becker J. M. 1998; Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66:5301–5306
    [Google Scholar]
  23. Lee K. L., Buckley H. R., Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13:148–153 [CrossRef]
    [Google Scholar]
  24. Lie Y. S., Petropoulos C. J. 1998; Advances in quantitative PCR technology: 5′ nuclease assays. Curr Opin Biotechnol 9:43–48 [CrossRef]
    [Google Scholar]
  25. Liu J., Fallon A. M. 1998; Effect of nutrient deprivation on ribosomal RNA and ribosomal protein mRNA in cultured mosquito cells. Arch Insect Biochem Physiol 37:239–247 [CrossRef]
    [Google Scholar]
  26. Livak K. J., Flood S. J., Marmaro J., Giusti W., Deetz K. 1995; Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Res 4:357–362 [CrossRef]
    [Google Scholar]
  27. Lopez-Ribot J. L., Alloush H. M., Masten B. J., Chaffin W. L. 1996; Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family. Infect Immun 64:3333–3340
    [Google Scholar]
  28. Magee B. B. 1994a; Preparation and digestion of chromosome-sized DNA. In Molecular Biology of Pathogenic Fungi, a Laboratory Manual pp. 85–89Edited by Maresca B., Kobayashi G. New York: Telos Press;
    [Google Scholar]
  29. Magee B. B. 1994b; Chromosome separation by pulsed-field gel electrophoresis. In Molecular Biology of Pathogenic Fungi, a Laboratory Manual pp. 95–98Edited by Maresca B., Kobayashi G. New York: Telos Press;
    [Google Scholar]
  30. Mager W. H., Ferreira P. M. 1993; Stress response of yeast. Biochem J. 290:1–13
    [Google Scholar]
  31. Mao X., Schwer B., Shuman S. 1995; Yeast mRNA cap methyltransferase is a 50-kilodalton protein encoded by an essential gene. Mol Cell Biol 15:4167–4174
    [Google Scholar]
  32. Morrow B., Anderson J., Wilson J., Soll D. R. 1989; Bidirectional stimulation of the white-opaque transition of Candida albicans by ultraviolet irradiation. J Gen Microbiol 135:1201–1208
    [Google Scholar]
  33. Mueller E., Schuemann M., Rickers A., Bommert K., Wittmann-Liebold B., Otto A. 1999; Study of Burkitt lymphoma cell line proteins by high resolution two-dimensional gel electrophoresis and nanoelectrospray mass spectrometry. Electrophoresis 20:320–330 [CrossRef]
    [Google Scholar]
  34. Nicolet C. M., Craig E. A. 1991; Functional analysis of a conserved amino-terminal region of HSP70 by site-directed mutagenesis. Yeast 7:699–716 [CrossRef]
    [Google Scholar]
  35. Odds F. C. 1991; Quantitative microculture system with standardized inocula for strain typing, susceptibility testing, and other physiologic measurements with Candida albicans and other yeasts. J Clin Microbiol 29:2735–2740
    [Google Scholar]
  36. Orlando C., Pinzani P., Pazzagli M. 1998; Developments in quantitative PCR. Clin Chem Lab Med 36:255–269
    [Google Scholar]
  37. Otto A., Thiede B., Muller E. Ch., Scheler C., Wittmann-Liebold B., Jungblut P. 1996; Identification of human myocardial proteins separated by two-dimensional electrophoresis using an effective sample preparation for mass spectrometry. Electrophoresis 17:1643–1650 [CrossRef]
    [Google Scholar]
  38. Palmer E., Wilhelm J. M., Sherman F. 1979; Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature 277:148–150 [CrossRef]
    [Google Scholar]
  39. Pérez-Martin J., Uria J. A., Johnson A. D. 1999; Phenotypic switching in Candida albicans by a SIR2 gene. EMBO J 18:2580–2592 [CrossRef]
    [Google Scholar]
  40. Ping Wang S., Deng L., Ho C. K., Shuman S. 1997; Phylogeny of mRNA capping enzymes. Proc Natl Acad Sci 94:9573–9578 [CrossRef]
    [Google Scholar]
  41. Radford D. L., Challacombe S. J., Walter J. D. 1994; A scanning electron miscroscopy investigation of the structure of colonies of different morphologies produced by phenotypic switching of Candida albicans. J Med Microbiol 40:416–423 [CrossRef]
    [Google Scholar]
  42. Rikkerink E. H., Magee B. B., Magee P. T. 1988; Opaque-white phenotype transition: a programmed morphological transition in Candida albicans. J Bacteriol 170:895–899
    [Google Scholar]
  43. Rustchenko-Bulgac E. P., Sherman F., Hicks J. B. 1990; Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of Candida albicans. J Bacteriol 172:1276–1283
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Sandbaken M. G., Lupisella J. A., DiDomenico B., Chakraburtty K. 1990; Protein synthesis in yeast: structural and functional analysis of the gene encoding elongation factor 3. J Biol Chem 265:15838–15844
    [Google Scholar]
  46. Schwer B., Shuman S. 1994; Mutational analysis of yeast mRNA capping enzyme. Proc Natl Acad Sci USA 91:4328–4332 [CrossRef]
    [Google Scholar]
  47. Schwer B., Shuman S. 1996; Conditional inactivation of mRNA capping enzyme affects yeast pre-mRNA splicing in vivo. RNA 2:574–583
    [Google Scholar]
  48. Schwer B., Mao X., Shuman S. 1998; Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucleic Acids Res 26:2050–2057 [CrossRef]
    [Google Scholar]
  49. Shibagaki Y., Itoh N., Yamada H., Nagata S., Mizumoto K. 1992; mRNA capping enzyme: isolation and characterization of the gene encoding mRNA guanylyltransferase subunit from Saccharomyces cerevisiae. J Biol Chem 267:9521–9528
    [Google Scholar]
  50. Shuman S., Liu Y., Schwer B. 1994; Covalent catalysis in nucleotidyl transfer reactions: essential motifs in Saccharomyces cerevisiae RNA capping enzyme are conserved in Schizosaccharomyces pombe and viral capping enzymes and among polynucleotide ligases. Proc Natl Acad Sci USA 91:12046–12050 [CrossRef]
    [Google Scholar]
  51. Simonin D., Diaz J. J., Masse T., Madjar J. J. 1997; Persistence of ribosomal protein synthesis after infection of HeLa cells by herpes simplex virus type I. J Gen Virol 78:435–443
    [Google Scholar]
  52. Singh A., Ursic D., Davies J. 1979; Phenotypic suppression and misreading in Saccharomyces cerevisiae. Nature 277:146–148 [CrossRef]
    [Google Scholar]
  53. Slutsky B., Buffo J., Soll D. R. 1985; High-frequency switching of colony morphology in Candida albicans. Science 230:666–669 [CrossRef]
    [Google Scholar]
  54. Smith D. B., Johnson K. S. 1988; Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40 [CrossRef]
    [Google Scholar]
  55. Soll D. R. 1986; The regulation of cellular differentiation in the dimorphic yeast Candida albicans. Bioessays 5:5–11 [CrossRef]
    [Google Scholar]
  56. Soll D. R. 1992; High-frequency switching in Candida albicans. Clin Microbiol Rev 5:183–203
    [Google Scholar]
  57. Sundstrom P., Smith D., Sypherd P. S. 1990; Sequence analysis and expression of the two genes for elongation factor 1α from the dimorphic yeast Candida albicans. J Bacteriol 172:2036–2045
    [Google Scholar]
  58. Wei C. M., Moss B. 1975; Methylated nucleotides block 5′-terminus of vaccinia virus messenger RNA. Proc Natl Acad Sci USA 72:318–322 [CrossRef]
    [Google Scholar]
  59. Wittman-Liebold B. 1992; High sensitive protein sequence analysis. Pure Appl Chem 64:537–543
    [Google Scholar]
  60. Woolford J. L., Warner J. R. 1991; The ribosome and its synthesis. In The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae pp. 587–626Edited by Broach J. R., Pringle J. R., Jones E. W. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  61. Yamada-Okabe T., Shimmi O., Doi R., Mizumoto K., Arisawa M., Yamada-Okabe H. 1996; Isolation of the mRNA-capping enzyme and ferric-reductase-related genes from Candida albicans. Microbiology 142:2515–2523 [CrossRef]
    [Google Scholar]
  62. Yamada-Okabe T., Mio T., Matsui M., Kashuma Y., Arisawa M., Yamada-Okabe H. 1998a; Isolation and characterization of the Candida albicans gene for mRNA 5′-triphosphatase: association of mRNA 5′-triphosphatase and mRNA 5′-guanylyltransferase activities is essential for the function of mRNA 5′-capping enzyme in vivo. FEBS Lett 435:49–54 [CrossRef]
    [Google Scholar]
  63. Yamada-Okabe T., Doi R., Shimmi O., Arisawa M., Yamada-Okabe H. 1998b; Isolation and characterization of a human cDNA for mRNA 5′-capping enzyme. Nucleic Acids Res 26:1700–1706 [CrossRef]
    [Google Scholar]
  64. Zeuthen M. L., Howard D. H. 1989; Thermotolerance and the heat-shock response in Candida albicans. J Gen Microbiol 135:2509–2518
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-353
Loading
/content/journal/micro/10.1099/00221287-146-2-353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error