1887

Abstract

As a basis for studing the essential cellular processes of hyperthermophilic archaea, thermosensitive mutants of were isolated and characterized. Exponential-phase liquid cultures were shifted to the non-permissive temperature and growth, viability, and distributions of cell mass and DNA content were measured as a function of time after the shift. The observed phenotypes demonstrate that chromosome replication, nucleoid organization, nucleoid partition and cell division, which normally are tightly co-ordinated during cellular growth, can be inhibited or uncoupled by mutation in this hyperthermophilic archaeon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-749
2000-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460749a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-749&mimeType=html&fmt=ahah

References

  1. Baumann P., Jackson S. P. 1996; An archaebacterial homologue of the essential eubacterial cell division protein FtsZ. Proc Natl Acad Sci USA 93:6726–6730 [CrossRef]
    [Google Scholar]
  2. Bernander R. 1998; Archaea and the cell cycle. Mol Microbiol 29:955–961 [CrossRef]
    [Google Scholar]
  3. Bernander R., Poplawski A. 1997; Cell cycle characteristics of thermophilic archaea. J Bacteriol 179:4963–4969
    [Google Scholar]
  4. Bult C. J., White O., Olsen G. J.37 other authors 1996; Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073 [CrossRef]
    [Google Scholar]
  5. Grogan D. W. 1989; Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719
    [Google Scholar]
  6. Grogan D. W. 1995; Isolation of Sulfolobus acidocaldarius mutants. In Archaea: a Laboratory Manual: Thermophiles pp. 125–131Edited by Robb F. T.others Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  7. Grogan D. W. 1996; Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. J Bacteriol 178:3207–3211
    [Google Scholar]
  8. Grogan D. W., Gunsalus R. P. 1993; Sulfolobus acidocaldarius synthesizes UMP via a standard de novo pathway: results of a biochemical-genetic study. J Bacteriol 175:1500–1507
    [Google Scholar]
  9. Hirota Y., Ryter A., Jacob F. 1968; Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harbor Symp Quant Biol 33:677–694 [CrossRef]
    [Google Scholar]
  10. Hjort K., Bernander R. 1999; Changes in cell size and DNA content in Sulfolobus cultures during dilution and temperature shift experiments. J Bacteriol 181:5669–5675
    [Google Scholar]
  11. Kawarabayasi Y., Sawada M., Horikawa H.28 other authors 1998; Complete sequence and gene organization of the genome of a hyperthermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5:55–76 [CrossRef]
    [Google Scholar]
  12. Kawarabayasi Y., Hino Y., Horikawa H.27 other authors 1999; Complete genome sequence of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6:83–101 [CrossRef]
    [Google Scholar]
  13. Klenk H.-P., Clayton R. A., Tomb J.-F.48 other authors 1997; The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370 [CrossRef]
    [Google Scholar]
  14. Lutkenhaus J., Addinall S. G. 1997; Bacterial cell division and the Z ring. Ann Rev Biochem 66:93–116 [CrossRef]
    [Google Scholar]
  15. Margolin W., Wang R., Kumar M. 1996; Isolation of an ftsZ homolog from the Archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. J Bacteriol 178:1320–1327
    [Google Scholar]
  16. Poplawski A., Bernander R. 1997; Nucleoid structure and distribution in thermophilic archaea. J Bacteriol 179:7625–7630
    [Google Scholar]
  17. Schleper C., Röder R., Singer T., Zillig W. 1994; An insertion element of the extremely thermophilic archaeon Sulfolobus solfataricus transposes into the endogenous β-galactosidase gene. Mol Gen Genet 243:91–96 [CrossRef]
    [Google Scholar]
  18. Smith D. R., Doucette-Stamm L. A., Deloughery C.34 other authors 1997; Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155
    [Google Scholar]
  19. Stetter K. O. 1999; Extremophiles and their adaptation to hot environments. FEBS Lett 452:22–25 [CrossRef]
    [Google Scholar]
  20. Wang X., Lutkenhaus J. 1996; FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol Microbiol 21:313–319 [CrossRef]
    [Google Scholar]
  21. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-749
Loading
/content/journal/micro/10.1099/00221287-146-3-749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error