1887

Abstract

is a major cause of bovine mastitis. Since gene expression of many bacteria is known to be regulated by the environment, milk may play an important role in the regulation of the early steps in the pathogenesis of bovine mastitis by . To get insight into the response of to the milk environment, a Tn mutant library was generated and screened for genes specifically expressed during growth in milk. Twenty-eight mutants were identified and analysed. Four groups of genes were found, involved in cell-wall synthesis, nucleotide synthesis, transcriptional regulation and carbohydrate metabolism. A fifth group contained genes with hypothetical or unknown functions. Many of the genes identified belonged to biosynthetic pathways of and other bacterial species which have also been shown to play a role as determined in murine infection models. Therefore, growth on milk may be an attractive model for the identification of genes preferentially expressed during bovine mastitis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-4-981
2000-04-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/4/1460981a.html?itemId=/content/journal/micro/10.1099/00221287-146-4-981&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gisch W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Berger-Bachi B., Strassle A., Gustafson J. E., Kayser F. H. 1992; Mapping and characterization of multiple chromosomal factors involved in methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 36:1367–1373 [CrossRef]
    [Google Scholar]
  3. Birkey S. M., Liu W., Zhang X., Duggan M. F., Hullet F. M. 1998; Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis phoP directly regulates production of resD. Mol Microbiol 30:943–953 [CrossRef]
    [Google Scholar]
  4. Camilli A., Portnoy D. A., Youngman P. 1990; Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions. J Bacteriol 172:3738–3744
    [Google Scholar]
  5. Chan P. F., Foster S. J. 1998; The role of environmental factors in the regulation of virulence-determinant expression in Staphylococcus aureus 8325-4. Microbiology 144:2469–2479 [CrossRef]
    [Google Scholar]
  6. Cheung A. L., Koomey J. M., Butler C. A., Projan S. J., Fischetti V. A. 1992; Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc Natl Acad Sci USA 89:6462–6466 [CrossRef]
    [Google Scholar]
  7. Coulter S. N., Schwan W. R., Ng E. Y. W.7 other authors 1998; Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol 30:393–404 [CrossRef]
    [Google Scholar]
  8. Ehlert K., Schroder W., Labischinsky H. 1997; Specificities of femA and femB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation. J Bacteriol 179:7573–7576
    [Google Scholar]
  9. Fang W., Shi M., Huang L., Shao Q., Chen J. 1993; Growth of lactobacilli, Staphylococcus aureus and Escherichia coli in normal and mastitic milk and whey. Vet Microbiol 37:115–125 [CrossRef]
    [Google Scholar]
  10. Finlay B. B., Falkow S. 1997; Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169
    [Google Scholar]
  11. Ghim S., Neuhard J. 1994; The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease. J Bacteriol 176:3698–3707
    [Google Scholar]
  12. Klarsfeld A. D., Goossens P. L., Cossart P. 1994; Five Listeria monocytogenes genes preferentially expressed in infected mammalian cells: plcA, purH, purD, pyrE and an arginine ABC transporter gene, arp. J Mol Microbiol 13:585–597 [CrossRef]
    [Google Scholar]
  13. Lowe A. M., Beattie D. T., Deresiewicz R. L. 1998; Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol Microbiol 27:967–976 [CrossRef]
    [Google Scholar]
  14. Mahan M. J., Slauch M. J., Mekalanos J. J. 1993; Selection of bacterial genes that are specifically induced in host tissues. Science 259:686–688 [CrossRef]
    [Google Scholar]
  15. Mamo W., Lindahl M., Jonsson P. 1991; Enhanced virulence of Staphylococcus aureus from bovine mastitis induced by growth in milk whey. Vet Microbiol 27:371–384 [CrossRef]
    [Google Scholar]
  16. Marquardt J. L., Siegele D. A., Kolter R., Walsh C. T. 1992; Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J Bacteriol 174:5748–5752
    [Google Scholar]
  17. Mei J., Nourbakhsh F., Ford C. W., Holden D. 1997; Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol 26:399–407 [CrossRef]
    [Google Scholar]
  18. Novick R. P. 1991; Genetic systems in staphylococci. Methods Enzymol 204:587–636
    [Google Scholar]
  19. Ohlsen K., Koller K. P., Hacker J. 1997; Analysis of expression of the alpha-toxin gene (hla) of Staphylococcus aureus by using a chromosomally encoded hla::lacZ fusion. Infect Immun 65:3606–3614
    [Google Scholar]
  20. Oskouian B., Stewart G. C. 1990; Repression and catabolite repression of the lactose operon of Staphylococcus aureus. J Bacteriol 172:3804–3812
    [Google Scholar]
  21. Podbielski A., Woischnik M., Kreikemeyer B., Bettenbrock K., Buttaro B. A. 1999; Cysteine protease SpeB expression in group A streptococci is influenced by the nutritional environment but SpeB does not contribute to obtaining essential nutrients. Med Microbiol Immunol 188:99–109 [CrossRef]
    [Google Scholar]
  22. Polissi A., Pontiggia A., Feger G., Altieri M., Mottl H., Ferrari L., Simon D. 1998; Large scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 66:5620–5629
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Sandgren C. H., Mamo W., Larsson I., Lindahl M., Björk I. 1991; A periodate-sensitive anti-phagocytic surface structure, induced by growth in milk and milk whey, on Staphylococcus aureus isolated from bovine mastitis. Microb Pathog 11:211–220 [CrossRef]
    [Google Scholar]
  25. Schaferjohann J., Yoo J. G., Kusian B., Bowien B. 1993; The cbb operons of the facultative chemoautotroph Alcaligenes euthrophus encode phosphoglycolate phosphatase. J Bacteriol 175:7329–7340
    [Google Scholar]
  26. Schenk S., Laddaga R. A. 1992; Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett 94:133–138 [CrossRef]
    [Google Scholar]
  27. Seki T., Yoshikawa H., Takahashi H., Saito H. 1988; Nucleotide sequence of Bacillus subtilis phoR gene. J Bacteriol 170:5935–5938
    [Google Scholar]
  28. Seligman S. J., Pincus M. R. 1987; A model for the three-dimensional structure of peptidoglycan in staphylococci. J Theor Biol 124:275–292 [CrossRef]
    [Google Scholar]
  29. Sinai A. P., Bavoil P. M. 1993; Hyper-invasive mutants define a novel Pho-regulated invasion pathway in Escherichia coli. Mol Microbiol 10:1125–1137 [CrossRef]
    [Google Scholar]
  30. van Sinderen D., Luttinger A., Kong L., Dubnau D., Venema G., Hamoen L. 1995; comK encodes the transcription competence factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 15:455–462 [CrossRef]
    [Google Scholar]
  31. Smith H. E., Wisselink H. J., Vecht U., Gielkens A. L. J., Smits M. A. 1995; High-efficiency transformation and gene inactivation in Streptococcus suis type 2. Microbiology 141:181–188 [CrossRef]
    [Google Scholar]
  32. Sutra L., Poutrel B. 1994; Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J Med Microbiol 40:79–89 [CrossRef]
    [Google Scholar]
  33. Sutra L., Rainard P., Poutrel B. 1990; Phagocytosis of mastitis isolates of Staphylococcus aureus and expression of type 5 capsular polysacharide are influenced by growth in the presence of milk. J Clin Microbiol 28:2253–2258
    [Google Scholar]
  34. Takeuchi S., Kinoshita T., Kaidoh T., Hashizume N. 1999; Purification and characterization of protease produced by Staphylococcus aureus isolated from a diseased chicken. Vet Microbiol 67:195–202 [CrossRef]
    [Google Scholar]
  35. Wang J., Mushegian A., Lori S., Jin S. 1996; Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc Natl Acad Sci USA 93:10434–10439 [CrossRef]
    [Google Scholar]
  36. Wanner B. L. 1993; Gene regulation by phosphate in enteric bacteria. J Cell Biochem 51:47–54 [CrossRef]
    [Google Scholar]
  37. Wehrmann A., Phillipp B., Sahm H., Eggeling L. 1998; Different modes of diaminopimelate synthesis and their role in cell wall integrity: a study with Corynebacterium glutamicum. J Bacteriol 180:3159–3165
    [Google Scholar]
  38. Youngman P. J. 1987; Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other gram-positive bacteria. In Plasmids: a Practical Approach pp. 79–103Edited by Hardy K. Oxford: IRL Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-4-981
Loading
/content/journal/micro/10.1099/00221287-146-4-981
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error