1887

Abstract

Under heat-stress conditions bacteria induce, among other heat-shock proteins, the Hsp70 molecular chaperone (DnaK), which is involved in protein stabilization. It has been shown in that an Hsp70 homologue called Hsc66, which is widespread in bacteria, functions as a chaperone . This paper reports the isolation of a W51D mutant (W51M22) by insertion of the mini-Tn-Hg transposon, which was unable to grow on ethanol and other short-chain alcohols as sole source of carbon. The transposon insertion in this mutant was shown to be located in the gene encoding Hsc66. The inability of mutant W51M22 to use ethanol was complemented by the operon. The authors characterized the transcriptional arrangement of , showing that it forms part of an operon with the upstream gene, and that it is also expressed from its own promoter. These results are compatible with the Hsc66 protein being a functional molecular chaperone involved in the stabilization, in the presence of ethanol, of some proteins required for bacterial growth on short-chain alcohols.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-6-1429
2000-06-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/6/1461429a.html?itemId=/content/journal/micro/10.1099/00221287-146-6-1429&mimeType=html&fmt=ahah

References

  1. Abril M.-A., Michán C., Timmis K. N., Ramos J. L. 1989; Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J Bacteriol 171:6782–6790
    [Google Scholar]
  2. Alexeyev M. F., Shokolenko I. N., Croughan T. P. 1995; Improved antibiotic resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160:63–67 [CrossRef]
    [Google Scholar]
  3. Campos-Garcı́a J., Esteve A., Vázquez-Duhalt R., Ramos J. L., Soberón-Chávez G. 1999; Branched-chain dodecylbenzene sulfonate degradation pathway of Pseudomonas aeruginosa W51D involves a novel route for degradation of the surfactant lateral alkyl chain. Appl Environ Microbiol 65:3730–3734
    [Google Scholar]
  4. Clark M. A., Baumann L., Baumann P. 1998; Sequence analysis of a 34·7 kb DNA segment from the genome of Buchnera aphidicola containing groEL, dnaA the atp operon, gidA and rho. Curr Microbiol 36:158–163 [CrossRef]
    [Google Scholar]
  5. Darzins A., Chakrabarty A. M. 1984; Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol 159:9–18
    [Google Scholar]
  6. Fleischmann R. D., Adams M. D., White O.37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenza Rd. Science 269:496–512 [CrossRef]
    [Google Scholar]
  7. Gupta R. S., Golding G. B. 1993; Evolution of hsp70 gene and its implications regarding relationships between archaebacteria, eubacteria and eukaryotes. J Mol Evol 37:573–582
    [Google Scholar]
  8. Gutheil W. G., Holmquist B., Valle B. L. 1992; Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry 31:475–481 [CrossRef]
    [Google Scholar]
  9. Kawula T. H., Lelivelt M. J. 1994; Mutations in a gene encoding a new Hsp70 suppress rapid DNA inversion and bgl activation, but not proU derepression, in hns-1 mutant Escherichia coli. J Bacteriol 176:610–619
    [Google Scholar]
  10. Konstantopoulou I., Ouzounis C. A., Drosopoulou E., Yiangou M., Sideras P., Sander C., Scouras Z. G. 1995; A Drosophila hsp70 gene contains long, antiparallel, coupled open reading frames (LAC ORFs) conserved in homologous loci. J Mol Evol 41:414–420 [CrossRef]
    [Google Scholar]
  11. LéJohn H. B., Cameron L. E., Yang B., MacBeath G., Barker D. S., Williams S. A. 1994; Cloning and analysis of a constitutive heat shock (cognate) protein 70 gene inducible by glutamine. J Biol Chem 269:4513–4522
    [Google Scholar]
  12. Lelivelt M. J., Kawula T. H. 1995; Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock, but not by heat shock. J Bacteriol 177:4900–4907
    [Google Scholar]
  13. Liberek K., Marszalek J., Ang D., Georgopoulos C., Zylicz M. 1991; Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci USA 88:2874–2878 [CrossRef]
    [Google Scholar]
  14. de Lorenzo V., Timmis K. N. 1994; Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived mini-transposons. Methods Enzymol 235:386–405
    [Google Scholar]
  15. Olsen R. H., DeBusscher G., McCombie W. R. 1982; Development of broad-host-range vectors and gene banks: self-cloning of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol 150:60–69
    [Google Scholar]
  16. Parsell D. A., Lindquist S. 1993; The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496 [CrossRef]
    [Google Scholar]
  17. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21 [CrossRef]
    [Google Scholar]
  18. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Seaton B. L., Vickery L. E. 1994; A gene encoding a DnaK/hsp70 homolog in Escherichia coli. Proc Natl Acad Sci USA 91:2066–2070 [CrossRef]
    [Google Scholar]
  20. Silberg J. J., Hoff K. G., Vickery L. E. 1998; The Hsc66–Hsc20 chaperone system in Escherichia coli: chaperone activity and interactions with DnaK–DnaJ–GrpE system. J Bacteriol 180:6617–6624
    [Google Scholar]
  21. Soberón-Chávez G., Haı̈dour A., Ramos J. L., Campos J., Ortigoza J. 1996; Selection and preliminary characterization of a Pseudomonas aeruginosa strain mineralizing some isomers in a branched-chain dodecylbenzene sulfonate mixture. World J Microbiol Biotechnol 12:367–372 [CrossRef]
    [Google Scholar]
  22. Vickery L. E., Silberg J. J., Ta D. T. 1997; Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli. Protein Sci 6:1047–1056 [CrossRef]
    [Google Scholar]
  23. West S. E. H., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. 1994; Construction of improved Escherichia coli–Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 128:81–86
    [Google Scholar]
  24. Zheng L., Cash V. L., Flint D. H., Dean D. R. 1998; Assembly of iron–sulfur clusters. Identification of an iscSUA–hscBA–fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-6-1429
Loading
/content/journal/micro/10.1099/00221287-146-6-1429
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error