1887

Abstract

Two evolutionary mechanisms have been proposed in the process of protein diversification of the large family of antimicrobial toxins of , known as the colicins. Data from previous studies suggest that the relatively rare nuclease colicins appear to diversify primarily through the action of positive selection, whilst the more abundant pore-former colicins appear to diversify through the action of recombination. The complete DNA sequence of the newly characterized colicin plasmid, pCol-Let, isolated from a Yanomama Indian of South America, is presented here. This plasmid encodes a newly identified pore-former colicin, colicin Y. DNA and protein sequence comparisons of the colicin Y gene cluster and the encoded proteins with those of published pore-former colicins provide the first evidence that positive selection may also act to increase pore-former colicin diversity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1671
2000-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461671a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1671&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Chan P. T., Ohmori H., Tomizawa J., Lebowitz J. 1985; Nucleotide sequence and gene organization of ColE1 DNA. J Biol Chem 260:8925–8935
    [Google Scholar]
  3. Eveland W. C., Oliver W. J., Neel J. V. 1971; Characteristics of Escherichia coli serotypes in the Yanomama, a primitive Indian tribe of South America. Infect Immun 4:753–756
    [Google Scholar]
  4. Felsenstein J. 1988; Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565 [CrossRef]
    [Google Scholar]
  5. Friedman D. I., Baumann M., Baron L. S. 1976; Cooperative effects of bacterial mutations affecting λ N gene expression. Virology 73:119–127 [CrossRef]
    [Google Scholar]
  6. James R., Lazdunski C., Pattus F. 1991 Bacteriocins, microcins and lantibioticsNATO ASI series vol. 65 New York: Springer;
    [Google Scholar]
  7. James R., Kleanthous C., Moore G. R. 1996; The biology of E colicins: paradigms and paradoxes. Microbiology 142:1569–1580 [CrossRef]
    [Google Scholar]
  8. Lau P. C. K., Parsons M., Uchimura T. 1992; Molecular evolution of E colicin plasmids with emphasis on the endonuclease types. In Bacteriocins, Microcins and AntibioticsEdited by James R., Lazdunski C., Pattus F. Berlin: Springer;
    [Google Scholar]
  9. Miller H. I., Friedman D. I. 1980; An E. coli gene product required for λ site-specific recombination. Cell 20:711–719 [CrossRef]
    [Google Scholar]
  10. Morlon M., Sherratt D., Lazdunski C. 1988; Identification of functional regions of the colicinogenic plasmid ColA. Mol Gen Genet 211:223–230 [CrossRef]
    [Google Scholar]
  11. Neel J. V. 1970; Lessons from a ‘‘primitive’’ people. Science 170:815–822 [CrossRef]
    [Google Scholar]
  12. Neel J. V. 1994 Physician to the Gene Pool New York: Wiley;
    [Google Scholar]
  13. Pilsl H., Braun V. 1995; Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptake via the Tsx receptor and to pore formation. Mol Microbiol 16:57–67 [CrossRef]
    [Google Scholar]
  14. Pugsley A. P., Oudega B. 1987; Methods for studying colicins and their plasmids. In Plasmids: a Practical Approach pp. 105–161Edited by Hardy K. G. Oxford: IRL Press;
    [Google Scholar]
  15. Riley M. A. 1993a; Molecular mechanisms of colicin evolution. Mol Biol Evol 10:1380–1395
    [Google Scholar]
  16. Riley M. A. 1993b; Positive selection for colicin diversity in bacteria. Mol Biol Evol 10:1048–1059
    [Google Scholar]
  17. Riley M. A. 1998; Molecular mechanisms of bacteriocin evolution. Annu Rev Genet 32:255–278 [CrossRef]
    [Google Scholar]
  18. Riley M. A., Gordon D. 1992; A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. J Gen Microbiol 138:1345–1352 [CrossRef]
    [Google Scholar]
  19. Riley M. A., Gordon D. 1995; Ecology and evolution of bacteriocins. J Ind Microbiol 17:155–158
    [Google Scholar]
  20. Riley M. A., Tan Y., Wang J. P. 1994; Nucleotide polymorphism in colicin E1 and Ia plasmids from natural isolates of Escherichia coli. Proc Natl Acad Sci USA 91:11276–11280 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Smajs D., Pilsl H., Braun V. 1997; Colicin U, a novel colicin produced by Shigella boydii. J Bacteriol 179:4919–4928
    [Google Scholar]
  23. Swofford D. 1997 Phylogenetic Analysis using Parsimony (PAUP* 4.0*) Sunderland, MA: Sinauer;
    [Google Scholar]
  24. Tan Y., Riley M. A. 1997; Positive selection and recombination: major molecular mechanisms in colicin diversification. Trends Ecol Evol 12:348–351 [CrossRef]
    [Google Scholar]
  25. Vuyst L. D., Vandamme E. 1994; Lactic acid bacteria and bacteriocins: their practical importance. In Bacteriocins of Lactic Acid Bacteria pp. 1–11Edited by De Vuyst L. London: Blackie Academic and Professional;
    [Google Scholar]
  26. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1671
Loading
/content/journal/micro/10.1099/00221287-146-7-1671
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error