1887

Abstract

In the operon involved in glycolate utilization is located at 673 min and formed by genes encoding the enzymes glycolate oxidase () and malate synthase G (). Their expression from a single promoter upstream of is induced by growth on glycolate and regulated by the activator encoded by the divergently transcribed gene . Gene , located 350 bp downstream of , encodes a hydrophobic protein highly similar to the L-lactate permease encoded by . Expression studies have shown that the gene (proposed name ) is transcribed from the same promoter as the other structural genes and thus belongs to the operon. Characterization of a :: mutant showed that GlcA acts as glycolate permease and that glycolate can also enter the cell through another transport system. Evidence is presented of the involvement of L-lactate permease in glycolate uptake. Growth on this compound was abolished in a double mutant of the paralogous genes and , and restored with plasmids expressing either GlcA or LldP. Characterization of the putative substrates for these two related permeases showed, in both cases, specificity for the 2-hydroxymonocarboxylates glycolate, L-lactate and D-lactate. Although both GlcA and LldP recognize D-lactate, mutant analysis proved that L-lactate permease is mainly responsible for its uptake.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-1069
2001-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1471069a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-1069&mimeType=html&fmt=ahah

References

  1. Bandell M., Ansanay V., Rachidi N., Dequin S., Lolkema J. S. 1997; Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family. J Biol Chem 272:18140–18146 [CrossRef]
    [Google Scholar]
  2. Belasco J. G., Beatty T., Adams C. W., Cohen S. N, von Gabain A. 1985; Differential expression of photosynthesis genes in R. capsulata results from segmental differences in stability within the polycistronic rxcA transcript. Cell 40:171–181 [CrossRef]
    [Google Scholar]
  3. Berlyn M. K. B. 1998; Linkage map of Escherichia coli K12, edition 10: the traditional map. Microbiol Mol Biol Rev 62:814–984
    [Google Scholar]
  4. Blattner F. R., Bloch C. A. 14 other authors Plunkett G. III 1997; The complete genome sequence of the Escherichia coli K-12. Science 277:1453–1462 [CrossRef]
    [Google Scholar]
  5. Boronat A., Aguilar J. 1979; Rhamnose-induced propanediol oxidoreductase in Escherichia coli : purification, properties, and comparison with the fucose-induced enzyme. J Bacteriol 140:320–326
    [Google Scholar]
  6. Bruijn F. J., Lupski J. R. 1984; The use of transposon Tn 5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids. Gene 27:131–149 [CrossRef]
    [Google Scholar]
  7. Casadaban M. J. 1976; Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104:541–555 [CrossRef]
    [Google Scholar]
  8. Chang Y. Y., Wang A. Y., Cronan J. E. Jr 1993; Molecular cloning, DNA sequencing, and biochemical analysis of Escherichia coli glyoxylate carboligase. J Biol Chem 268:3911–3919
    [Google Scholar]
  9. Collins S. H., Jarvis A. W., Lindsay R. J., Hamilton W. A. 1976; Proton movements coupled to lactate and alanine transport in Escherichia coli : isolation of mutants with altered stoichiometry in alanine transport. J Bacteriol 126:1232–1244
    [Google Scholar]
  10. Dong J. M., Taylor J. S., Latour D. J., Iuchi S., Lin E. C. C. 1993; Three overlapping lct genes involved in l-lactate utilization by Escherichia coli . J Bacteriol 175:6671–6678
    [Google Scholar]
  11. Elliot T. 1992; A method for constructing single copy lac fusions in Salmonella typhimurium and its application to the hemA–prfA operon. J Bacteriol 174:245–253
    [Google Scholar]
  12. Friedrich M., Laderer U., Schink B. 1991; Fermentative degradation of glycolic acid by defined syntrophic cocultures. Arch Microbiol 156:398–404 [CrossRef]
    [Google Scholar]
  13. Fuqua W. C. 1992; An improved chloramphenicol resistance gene cassette for site-directed marker replacement mutagenesis. Biotechniques 12:223–225
    [Google Scholar]
  14. Halestrap A. P., Price N. T. 1999; The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343:281–299 [CrossRef]
    [Google Scholar]
  15. Hansen R. W., Hayashi J. A. 1962; Glycollate metabolism in Escherichia coli . J Bacteriol 83:679–687
    [Google Scholar]
  16. Holmes D. S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197 [CrossRef]
    [Google Scholar]
  17. Howitz K. T., McCarty R. E. 1991; Solubilization, partial purification, and reconstitution of the glycolate/glycerate transporter from chloroplast inner envelope membranes. Plant Physiol 96:1060–1069 [CrossRef]
    [Google Scholar]
  18. Jackson V. N., Halestrap A. P. 1996; The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem 271:861–868 [CrossRef]
    [Google Scholar]
  19. Kohara Y., Akiyame K., Isono K. 1987; The physical map of the whole Escherichia coli chromosome. Application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–501 [CrossRef]
    [Google Scholar]
  20. Kornberg H. L., Sadler J. R. 1961; The metabolism of C2 compounds in microorganisms. 8. A dicarboxylic acid cycle as a route for the oxidation of glycollate by Escherichia coli . Biochem J 81:503–513
    [Google Scholar]
  21. Lord J. M. 1972; Glycolate oxidoreductase in Escherichia coli . Biochim Biophys Acta 267:227–237 [CrossRef]
    [Google Scholar]
  22. Matin A., Konings W. N. 1973; Transport of lactate and succinate by membrane vesicles of Escherichia coli , Bacillus subtilis and a Pseudomonas species. Eur J Biochem 34:58–67 [CrossRef]
    [Google Scholar]
  23. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Molina I., Pellicer M.-T., Badia J., Aguilar J., Baldomà L. 1994; Molecular characterization of Escherichia coli malate synthase G. Differentiation with the malate synthase A isoenzyme. Eur J Biochem 224:541–548 [CrossRef]
    [Google Scholar]
  25. Moralejo P., Egan S. M., Hidalgo E., Aguilar J. 1993; Sequencing and characterization of a gene cluster encoding the enzymes for l-rhamnose metabolism in Escherichia coli . J Bacteriol 175:5585–5594
    [Google Scholar]
  26. Mudd E. A., Krisch H. M., Higgins C. F. 1990; RNAseE, an endoribonuclease, has a general role in the chemical decay of Escherichia coli mRNA: evidence that rne and ams are the same genetic locus. Mol Microbiol 4:2127–2135 [CrossRef]
    [Google Scholar]
  27. Ornston L. N., Ornston M. K. 1969; Regulation of glyoxylate metabolism in Escherichia coli K12. J Bacteriol 98:1098–1108
    [Google Scholar]
  28. Pellicer M.-T., Badia J., Aguilar J., Baldomà L. 1996; glc locus of Escherichia coli : characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J Bacteriol 178:2051–2059
    [Google Scholar]
  29. Pellicer M.-T., Fernandez C., Badia J., Aguilar J., Lin E. C. C., Baldomà L. 1999; Cross-induction of glc and ace operons of Escherichia coli attributable to pathway intersection. Characterization of the glc promoter. J Biol Chem 274:1745–1752 [CrossRef]
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sensen C. W., Klenk H. P., Singh R. K. 10 other authors 1996; Organizational characteristics and information content of an archaeal genome: 156 kb of sequence from Sulfolobus sofataricus P2. Mol Microbiol 22:175–191 [CrossRef]
    [Google Scholar]
  32. Saier M. H. Jr 2000; Families of transmembrane sugar transport proteins. Mol Microbiol 35:699–710 [CrossRef]
    [Google Scholar]
  33. Silhavy T. J., Berman M. L., Enquist L. 1984 Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac -based cloning vectors for protein and operon fusions. Gene 53:85–96 [CrossRef]
    [Google Scholar]
  35. Stewart R., Codd G. A. 1981; Glycollate and glyoxylate excretion by Sphaerocystis schroeteri (Chlorophylaceae. Br Phycol J 16:177–182 [CrossRef]
    [Google Scholar]
  36. Vanderwinkel E., De Vlieghere M. 1968; Physiologie et génétique de l’isocitritase et des malate synthases chez Escherichia coli . Eur J Biochem 5:81–90 [CrossRef]
    [Google Scholar]
  37. Wackernagel W. 1973; Genetic transformation in E. coli : the inhibitory role of the recBC DNAse. Biochem Biophys Res Commun 51:306–311 [CrossRef]
    [Google Scholar]
  38. Wilson B. J., Tolbert N. E. 1991; The transport of glycolic acid by Chlamydomonas reinhardtii . FEBS Lett 279:313–315 [CrossRef]
    [Google Scholar]
  39. Winans S. C., Elledge S. J., Krueger J. H., Walker G. C. 1985; Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli . J Bacteriol 161:1219–1221
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-1069
Loading
/content/journal/micro/10.1099/00221287-147-4-1069
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error