1887

Abstract

Fur (ferric uptake regulation protein) activates expression, increasing expression levels by a factor of seven and transcript stability by a factor of three. Post-transcriptional regulation of was investigated by searching for endoribonucleases that might be involved in mRNA degradation. The activation of expression was significantly reduced if both the RNaseE and RNaseIII genes were mutated. This correlated with cleavage at a palindromic sequence located in the 5′ untranslated region of the transcript. An RNA-binding assay showed that Fur did not directly protect the transcript. It was hypothesized that the persistence of Fur-mediated activation of expression in the RNase double mutant was probably due to an effect at the transcriptional level. Therefore, it was investigated whether Fur had a direct transcriptional effect . Fur bound the promoter region with low affinity, but it was not able to increase transcription. H-NS-mediated repression of expression, which has been shown to be Fur-dependent, was characterized. No DNA-bending region was identified in the promoter region. H-NS did not interfere with the post-transcriptional effect of Fur. Fur-dependent H-NS and the Fur post-transcriptional effect were not additive. This suggests that Fur and H-NS effects are indirect and may be mediated by a common intermediate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-147
2002-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480147a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-147&mimeType=html&fmt=ahah

References

  1. Alén C., Sonenshein A. L. 1999; Bacillus subtilis aconitase is an RNA-binding protein. Proc Natl Acad Sci USA 96:10412–10417 [CrossRef]
    [Google Scholar]
  2. Andrews S. C., Harrison P. M., Guest J. R. 1989; Cloning, sequencing, and mapping of the bacterioferritin gene ( bfr ) of Escherichia coli . J Bacteriol 171:3940–3947
    [Google Scholar]
  3. Atlung T., Ingmer H. 1997; H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 24:7–17 [CrossRef]
    [Google Scholar]
  4. Babitzke P., Granger L., Olszewski J., Kushner S. R. 1993; Analysis of mRNA decay and rRNA processing in Escherichia coli multiple mutants carrying a deletion in RNase III. J Bacteriol 175:229–239
    [Google Scholar]
  5. Babst M., Hennecke H., Fischer H.-M. 1996; Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum . J Mol Biol 19:827–839
    [Google Scholar]
  6. Bagg A., Neilands J. B. 1987; Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 51:509–518
    [Google Scholar]
  7. Calderwood S. B., Mekalanos J. J. 1988; Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol 170:1015–1017
    [Google Scholar]
  8. Cesarone C. F., Bolognesi C., Santi L. 1979; Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal Biochem 100:188–197 [CrossRef]
    [Google Scholar]
  9. Coburn G. A., Miao X., Briant D. J., Mackie G. A. 1999; Reconstitution of a minimal RNA degradosome demonstrates functional coordination between a 3′ exonuclease and a DEAD-box RNA helicase. Genes and Dev 13:2594–2603 [CrossRef]
    [Google Scholar]
  10. Compan I., Touati D. 1993; Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Bacteriol 175:1687–1696
    [Google Scholar]
  11. Dieckmann S., Wang J. C. 1985; On the sequence determinants and flexibility of the kinetoplast DNA fragment with abnormal gel electrophoretic mobilities. J Mol Biol 186:1–11 [CrossRef]
    [Google Scholar]
  12. Dubrac S., Touati D. 2000; Fur positive regulation of iron superoxide dismutase in Escherichia coli : functional analysis of the sodB promoter. J Bacteriol 182:3802–3808 [CrossRef]
    [Google Scholar]
  13. Escolar L., Perez-Martin J., de Lorenzo V. 1997; Metalloregulation in vitro of the aerobactin promoter of Escherichia coli by the Fur (ferric uptake regulation) protein. Mol Microbiol 26:799–808 [CrossRef]
    [Google Scholar]
  14. Escolar L., Perez-Martin J., de Lorenzo V. 1998; Binding of the Fur (Ferric Uptake Regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J Mol Biol 283:537–547 [CrossRef]
    [Google Scholar]
  15. Escolar L., Perez-Martin J., de Lorenzo V. 1999; Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229
    [Google Scholar]
  16. Fridovich I. 1997; Superoxide anion radical (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(O_{2}^{{-}}\) \end{document}), superoxide dismutases (SODs), and related matters. J Biol Chem 272:18515–18517 [CrossRef]
    [Google Scholar]
  17. Gruer M. J., Guest J. R. 1994; Two genetically distinct and differentially regulated aconitases (AcnA and AcnB) in Escherichia coli . Microbiology 140:2531–2541 [CrossRef]
    [Google Scholar]
  18. Hajnsdorf E., Carpousis A. J., Régnier P. 1994; Nucleolytic inactivation and degradation of the RNase III processed pnp message encoding polynucleotide phosphorylase of Escherichia coli . J Mol Biol 239:439–454 [CrossRef]
    [Google Scholar]
  19. Hall H. K., Foster J. W. 1996; The role of Fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 178:5683–5691
    [Google Scholar]
  20. Halliwell B., Gutteridge M. C. 1984; Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14
    [Google Scholar]
  21. Hantke K. 2001; Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177 [CrossRef]
    [Google Scholar]
  22. Keyer K., Imlay J. A. 1996; Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA 93:13635–13640 [CrossRef]
    [Google Scholar]
  23. Laurent-Winter C., Ngo S., Danchin A., Bertin P. 1997; Role of Escherichia coli histone-like nucleoid-structuring protein in bacterial metabolism and stress response. Eur J Biochem 244:767–773 [CrossRef]
    [Google Scholar]
  24. Lopez P. J., Marchand I., Joyce S. A., Dreyfus M. 1999; The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo . Mol Microbiol 33:188–199 [CrossRef]
    [Google Scholar]
  25. de Lorenzo V., Giovannini F., Herrero M., Neilands J. B. 1988; Metal ion regulation of gene expression. Mol Biol 203:875–884 [CrossRef]
    [Google Scholar]
  26. de Lorenzo V., Wee S., Herrero M., Neilands J. B. 1987; Operator sequences of the aerobactin operon of plasmid ColV-K3 binding the ferric uptake regulation ( fur ) repressor. J Bacteriol 169:2624–2630
    [Google Scholar]
  27. Mackie G. A. 1998; Ribonuclease E is a 5′-end-dependent endonuclease. Nature 395:720–723 [CrossRef]
    [Google Scholar]
  28. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Mudd E. A., Krisch H. M., Higgins C. F. 1990; RNase E, an endoribonuclease, has a general role in the chemical decay of Escherichia coli mRNA: evidence that rne and ams are the same genetic locus . Mol Microbiol 4:2127–2135 [CrossRef]
    [Google Scholar]
  30. Nicholson A. W. 1999; Function, mechanism and regulation of bacterial ribonucleases. FEMS 23:371–390
    [Google Scholar]
  31. Niederhoffer E. C., Naranjo C. M., Bradley K. L., Fee J. A. 1990; Control of Escherichia coli superoxide dismutase ( sodA and sodB ) genes by the ferric iron uptake regulation (Fur) locus . J Bacteriol 172:1930–1938
    [Google Scholar]
  32. Ohta T., Ueguchi C., Mizuno T. 1999; rpoS function is essential for bgl silencing caused by C-terminal truncated H-NS in Escherichia coli . J Bacteriol 181:6278–6283
    [Google Scholar]
  33. Sakamoto H., Touati D. 1984; Cloning of the iron superoxide dismutase gene ( sodB ) in Escherichia coli K12. J Bacteriol 159:418–420
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Shamoo Y., Tam A., Konigsberg W. H., Williams K. R. 1993; Translational repression by the bacteriophage T4 gene 32 protein involves specific recognition of an RNA pseudoknot structure. J Mol Biol 232:89–104 [CrossRef]
    [Google Scholar]
  36. Stojiljkovic I., Baumler J. A., Hantke K. 1994; Fur regulon in gram-negative bacteria. J Mol Biol 236:531–545 [CrossRef]
    [Google Scholar]
  37. Tardat B., Touati D. 1991; Two global regulators repress the anaerobic expression of MnSOD in E. coli : Fur (ferric uptake regulation) and Arc (aerobic respiration control). Mol Microbiol 5:455–465 [CrossRef]
    [Google Scholar]
  38. Tardat B., Touati D. 1993; Iron and oxygen regulation of Escherichia coli MnSOD expression: competition between the global regulators Fur and ArcA for binding to DNA. Mol Microbiol 9:53–63 [CrossRef]
    [Google Scholar]
  39. Touati D. 1997; Superoxide dismutases in bacteria and pathogen protists. In Oxidative Stress and the Molecular Biology of Antioxidant Defenses pp 447–493 Edited by Scandalios J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Touati D. 2000; Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6 [CrossRef]
    [Google Scholar]
  41. Uzan M., Favre R., Brody E. 1988; A nuclease that cuts specifically in the ribosome binding site of some T4 mRNAs. Proc Natl Acad Sci USA 85:8895–8899 [CrossRef]
    [Google Scholar]
  42. Wee S., Neilands J. B., Bittner M. L., Hemming B. C., Haymore B. L., Seetharam R. 1988; Expression, isolation and properties of Fur (ferric uptake regulation) protein of Escherichia coli K12. Biol Metals 1:62–68 [CrossRef]
    [Google Scholar]
  43. Yamada H., Yoshida T., Tnaka K.-I., Sasakawa C., Mizuno T. 1991; Molecular analysis of the Escherichia coli hns gene encoding a DNA binding protein, which preferentially recognizes curved DNA sequence. Mol Gen Genet 230:332–336 [CrossRef]
    [Google Scholar]
  44. Zheng M., Doan B., Schneider T. D., Storz G. 1999; OxyR and SoxRS regulation of fur . J Bacteriol 181:4639–4643
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-147
Loading
/content/journal/micro/10.1099/00221287-148-1-147
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error