1887

Abstract

Periodic activation of zonal peptidoglycan (murein) synthesis at division sites in has been reported recently. Zonal synthesis is responsible for septum formation, whereas elongation of the cell sacculus is performed by diffuse insertion of precursors. Zonal synthesis can be triggered in , and () division mutants growing as filaments at the restrictive temperature, but not in mutant strains. The lytic response to β-lactams of cells able or unable to periodically trigger a zonal mode of murein synthesis could be substantially different. Therefore, we investigated the response to the bacteriolytic β-lactam cefsulodin of and mutants growing at the restrictive (42 °C) temperature. The cells lysed early and quickly after addition of the antibiotic. Sacculi of lysed cells were transversely cut in a very sharp way. In contrast the strain lysed late and slowly after addition of the antibiotic and sacculi showed a generalized weakening of the murein network and extended breaks with a frayed appearance. No transversely cut sacculi comparable to those seen in the samples were found. Our results strongly support that β-lactam-induced lysis occurs preferentially at division sites because of the activation of zonal murein synthesis at the initiation of septation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-79
2002-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480079a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-79&mimeType=html&fmt=ahah

References

  1. Ayala J. A., Garrido T., Vicente M., de Pedro M. A. 1994; Molecular biology of bacterial septation. In Bacterial Cell Wall pp 73–101 Edited by Ghuysen J. M., Hakenbeck R. Amsterdam: Elsevier;
    [Google Scholar]
  2. Blackman S. A., Smith T. J., Foster S. J. 1998; The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144:73–82 [CrossRef]
    [Google Scholar]
  3. Garcia del Portillo F., de Pedro M. A. 1990; Differential effect of mutational impairment of penicillin-binding proteins 1A and 1B on Escherichia coli strains harboring thermosensitive mutations in the cell division genes ftsA ,ftsQ , ftsZ , and pbpB . J Bacteriol 172:5863–5870
    [Google Scholar]
  4. Garcia del Portillo F., de Pedro M. A., Joseleau-Petit D., D’Ari R. 1989; Lytic response of Escherichia coli cells to inhibitors of penicillin-binding proteins 1a and 1b as a timed event related to cell division. J Bacteriol 171:4217–4221
    [Google Scholar]
  5. Glauner B., Höltje J.-V. 1990; Growth pattern of the murein sacculus of Escherichia coli . J Biol Chem 265:18988–18996
    [Google Scholar]
  6. Heidrich C., Templin M. F., Ursinus A., Merdanovic M., Berger J., Schwarz H., de Pedro M. A., Höltje J. -V. 2001; Involvement of N -acetylmuramyl-l-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. . Mol Microbiol 41:167–178 [CrossRef]
    [Google Scholar]
  7. Höltje J.-V. 1995; From growth to autolysis: the murein hydrolases in Escherichia coli . Arch Microbiol 164:243–254 [CrossRef]
    [Google Scholar]
  8. Höltje J.-V. 1996; Molecular interplay of murein synthases and murein hydrolases in Escherichia coli . Microb Drug Resist 2:99–103 [CrossRef]
    [Google Scholar]
  9. Höltje J.-V. 1998; Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli . Microbiol Mol Biol Rev 62:181–203
    [Google Scholar]
  10. Höltje J.-V., Glauner B. 1990; Structure and metabolism of the murein sacculus. Res Microbiol 141:75–89 [CrossRef]
    [Google Scholar]
  11. Höltje J.-V., Heidrich C. 2001; Enzymology of elongation and constriction of the murein sacculus of Escherichia coli . Biochimie 83:103–108 [CrossRef]
    [Google Scholar]
  12. Ishiguro E. E., Kusser W. 1988; Regulation of peptidoglycan biosynthesis and antibiotic-induced autolysis in nongrowing Escherichia coli : a preliminary model. In Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function pp 189–194 Edited by Actor P. Daneo-Moore L., Higgins M. L., Salton M. R. J., Shockman G. D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Jacoby G. H., Young K. D. 1991; Cell cycle-independent lysis of Escherichia coli by cefsulodin, an inhibitor of penicillin-binding proteins 1a and 1b. J Bacteriol 173:1–5
    [Google Scholar]
  14. Koch A. L. 2000; The exoskeleton of bacterial cells (the sacculus): still a highly attractive target for antibacterial agents that will last for a long time. Crit Rev Microbiol 26:1–35 [CrossRef]
    [Google Scholar]
  15. Kusser W., Ishiguro E. E. 1986; Lysis of nongrowing Escherichia coli by combinations of beta-lactam antibiotics and inhibitors of ribosome function. Antimicrob Agents Chemother 29:451–455 [CrossRef]
    [Google Scholar]
  16. Kusser W., Ishiguro E. E. 1987; Suppression of mutations conferring penicillin tolerance by interference with the stringent control mechanism of Escherichia coli. . J Bacteriol 169:4396–4398
    [Google Scholar]
  17. Leduc M., Kasra R., van Heijenoort J. 1982; Induction and control of the autolytic system of Escherichia coli . J Bacteriol 152:26–34
    [Google Scholar]
  18. Leduc M., van Heijenoort J. 1980; Autolysis of Escherichia coli . J Bacteriol 142:52–59
    [Google Scholar]
  19. Lennox E. S. 1955; Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206 [CrossRef]
    [Google Scholar]
  20. Nanninga N. 1991; Cell division and peptidoglycan assembly in Escherichia coli . Mol Microbiol 5:791–795 [CrossRef]
    [Google Scholar]
  21. Nanninga N. 1998; Morphogenesis of Escherichia coli . Microbiol Mol Biol Rev 62:110–129
    [Google Scholar]
  22. de Pedro M. A., Quintela J. C., Schwarz H., Höltje J.-V. 1997; Murein segregation in Escherichia coli . J Bacteriol 179:2823–2834
    [Google Scholar]
  23. Powell J. K., Young K. D. 1991; Lysis of Escherichia coli by beta-lactams which bind penicillin-binding proteins 1a and 1b: inhibition by heat shock proteins. J Bacteriol 173:4021–4026
    [Google Scholar]
  24. Prats R., de Pedro M. A. 1989; Normal growth and division of Escherichia coli with a reduced amount of murein. J Bacteriol 171:3740–3745
    [Google Scholar]
  25. Rogers H. J., Perkins H. R., Ward J. B. 1980; Antibiotics affecting bacterial wall synthesis. In Microbial Cell Walls and Membranes pp 298–382 Edited by Rogers H. J. Perkins H. R., Ward J. B. London: Chapman and Hall;
    [Google Scholar]
  26. Schwarz U., Asmus A., Frank H. 1969; Autolytic enzymes and cell division of Escherichia coli . J Mol Biol 41:419–429 [CrossRef]
    [Google Scholar]
  27. Shockman G. D., Höltje J.-V. 1994; Microbial peptidoglycan (murein) hydrolases. In Bacterial Cell Wall pp 131–166 Edited by Ghuysen J. M. Hakenbeck R. Amsterdam: Elsevier;
    [Google Scholar]
  28. Staugaard P., Woldringh C. L., Nanninga N., van den Berg F. M. 1976; Localization of ampicillin-sensitive sites in Escherichia coli by electron microscopy. J Bacteriol 127:1376–1381
    [Google Scholar]
  29. Tomasz A. 1974; The role of autolysins in cell death. In Mode of Action of Antibiotics on Microbial Walls and Membranes pp 439–447 Edited by Salton M. R. J. Tomasz A. New York: The New York Academy of Sciences;
    [Google Scholar]
  30. Tomasz A. 1983; Murein hydrolases – Enzymes in search of a physiological function?. In The Target of Penicillin pp 155–163 Edited by Hakenbeck R., Höltje J.-V., Labischinski H. Berlin: Walter der Gruyter;
    [Google Scholar]
  31. Tomasz A. 1984; Building and breaking of bonds in the cell wall of bacteria – the role for autolysins. In Microbial Cell Wall Synthesis and Autolysis pp 3–12 Edited by Nombela C. Amsterdam: Elsevier;
    [Google Scholar]
  32. Tuomanen E., Tomasz A. 1990; Mechanism of phenotypic tolerance of nongrowing pneumococci to beta-lactam antibiotics. Scand J Infect Dis Suppl 74:102–112
    [Google Scholar]
  33. Weidel W., Pelzer H. 1964; Bagshaped macromolecules – a new outlook on bacterial cell walls. Adv Enzymol 26:193–232
    [Google Scholar]
  34. Wientjes F. B., Nanninga N. 1991; On the role of the high molecular weight penicillin-binding proteins in the cell cycle of Escherichia coli . Res Microbiol 142:333–344 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-79
Loading
/content/journal/micro/10.1099/00221287-148-1-79
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error