1887

Abstract

Glycopeptidolipids (GPLs) are a major component of the outer layers of the cell walls of several non-tuberculous mycobacteria. The GPLs consist of a diglycosylated lipopeptide core which is variably modified by acetylation and methylation. Analysis of a region of the chromosome, upstream of the peptide synthetase gene, , revealed a GPL biosynthetic locus containing genes potentially involved in glycosylation, methylation, acetylation and transport of GPLs. Methyltransferases are required to modify rhamnose and the fatty acid of GPLs. Of the four methyltransferases encoded within the locus, one methyltransferase, Mtf2, was unlike sugar methyltransferases from other species. An mutant was created and was shown to be unable to methylate the GPL fatty acids. Direct evidence is presented that Mtf2 is a methyltransferase that modifies the GPL fatty acid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-3079
2002-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1483079a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-3079&mimeType=html&fmt=ahah

References

  1. Aguirrezabalaga I, Olano C, Allende N, Rodriguez L, Brana A. F, Mendez C., Salas J. A. 2000; Identification and expression of genes involved in biosynthesis of l-oleandrose and its intermediate l-olivose in the oleandomycin producer Streptomyces antibioticus . Antimicrob Agents Chemother 44:1266–1275
    [Google Scholar]
  2. Altschul S. F, Gish W, Miller W, Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  3. Aspinall G. O, Chatterjee D., Brennan P. J. 1995; The variable surface glycolipids of mycobacteria: structures, synthesis of epitopes, and biological properties. Adv Carbohydr Chem Biochem 51:169–242
    [Google Scholar]
  4. Baker M. E., Blasco R. 1992; Expansion of the mammalian 3 beta-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus. FEBS Lett 301:89–93
    [Google Scholar]
  5. Belisle J. T, Pascopella L, Inamine J. M, Brennan P. J., Jacobs W. R. Jr 1991; Isolation and expression of a gene cluster responsible for biosynthesis of the glycopeptidolipid antigens of Mycobacterium avium . J Bacteriol 173:6991–6997
    [Google Scholar]
  6. Belisle J. T, Klaczkiewicz K, Brennan P. J, Jacobs W. R. Jr, Inamine J. M. 1993; Rough morphological variants of Mycobacterium avium . Characterization of genomic deletions resulting in the loss of glycopeptidolipid expression. J Biol Chem 268:10517–10523
    [Google Scholar]
  7. Billman-Jacobe H, McConville M. J, Haites R. E, Kovacevic S., Coppel R. L. 1999; Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis . Mol Microbiol 33:1244–1253
    [Google Scholar]
  8. Brennan P. J., Nikaido H. 1995; The envelope of mycobacteria. Annu Rev Biochem 64:29–63
    [Google Scholar]
  9. Bull T. J, Sheridan J. M, Martin H, Sumar N, Tizard M., Hermon-Taylor J. 2000; Further studies on the GS element. A novel mycobacterial insertion sequence (IS 1612 ), inserted into an acetylase gene ( mpa) in Mycobacterium avium subsp. silvaticum but not in Mycobacterium avium subsp. paratuberculosis . Vet Microbiol 77:453–463
    [Google Scholar]
  10. Chatterjee D., Khoo K. H. 2001; The surface glycopeptidolipids of mycobacteria: structures and biological properties. Cell Mol Life Sci 58:2018–2042
    [Google Scholar]
  11. Chung L, Liu L, Patel S, Carney J. R., Reeves C. D. 2001; Deletion of rapQONML from the rapamycin gene cluster of Streptomyces hygroscopicus gives production of the 16- O -desmethyl-27-desmethoxy analog. J Antibiot 54:250–256
    [Google Scholar]
  12. Cirillo J. D, Bartella R. G, Bloom B. R., Jacobs W. R. 1991; A novel transposon trap for mycobacteria: isolation and characterisation of IS 1096 . J Bacteriol 173:7772–7780
    [Google Scholar]
  13. Cole S. T, Brosch R, Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  14. Daffé M, Lanéelle M. A., Puzo G. 1983; Structural elucidation by field desorption and electron-impact mass spectrometry of the C-mycosides isolated from Mycobacterium smegmatis . Biochim Biophys Acta 751:439–443
    [Google Scholar]
  15. Eckstein T. M, Silbaq F. S, Chatterjee D, Kelly N. J, Brennan P. J., Belisle J. T. 1998; Identification and recombinant expression of a Mycobacterium avium rhamnosyltransferase gene ( rtfA) involved in glycopeptidolipid biosynthesis. J Bacteriol 180:5567–5573
    [Google Scholar]
  16. Eckstein T. M, Inamine J. M, Lambert M. L., Belisle J. T. 2000; A genetic mechanism for deletion of the ser2 gene cluster and formation of rough morphological variants of Mycobacterium avium . J Bacteriol 182:6177–6182
    [Google Scholar]
  17. Folch J, Lee M., Stanley G. H. S. 1957; A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509
    [Google Scholar]
  18. Fouces R, Mellado E, Diez B., Barredo J. L. 1999; The tylosin biosynthetic cluster from Streptomyces fradiae : genetic organization of the left region. Microbiology 145:855–868
    [Google Scholar]
  19. Gerratana B, Cleland W. W., Frey P. A. 2001; Mechanistic roles of thr134, tyr160, and lys164 in the reaction catalyzed by dTDP-glucose 4,6-dehydratase. Biochemistry 40:9187–9195
    [Google Scholar]
  20. Horgen L, Barrow E. L, Barrow W. W., Rastogi N. 2000; Exposure of human peripheral blood mononuclear cells to total lipids and serovar-specific glycopeptidolipids from Mycobacterium avium serovars 4 and 8 results in inhibition of TH1-type responses. Microb Pathog 29:9–16
    [Google Scholar]
  21. Ikeda H, Nonomiya T, Usami M, Ohta T., Omura S. 1999; Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis . Proc Natl Acad Sci USA 96:9509–9514
    [Google Scholar]
  22. Inouye M, Suzuki H, Takada Y, Muto N, Horinouchi S., Beppu T. 1994; A gene encoding mycinamicin III O -methyltransferase from Micromonospora griseorubida . Gene 141:121–124
    [Google Scholar]
  23. Jacobs W. R. Jr, Kalpana G. V, Cirillo J. D, Pascopella L, Snapper S. B, Udani R. A, Jones W, Barletta R. G., Bloom B. R. 1991; Genetic systems for mycobacteria. Methods Enzymol 204:537–555
    [Google Scholar]
  24. Jarlier V., Nikaido H. 1990; Permeability barrier to hydrophilic solutes in Mycobacterium chelonei . J Bacteriol 172:1418–1423
    [Google Scholar]
  25. Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J., Ghosh D. 1995; Short-chain dehydrogenases/reductases (SDR. Biochemistry 34:6003–6013
    [Google Scholar]
  26. Liu H. W., Thorson J. S. 1994; Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu Rev Microbiol 48:223–256
    [Google Scholar]
  27. Ma Y. F, Mills J. A, Belisle J. T, Vissa V, Howell M, Bowlin K, Scherman M. S., McNeil M. 1997; Determination of the pathway for rhamnose biosynthesis in mycobacteria – cloning, sequencing and expression of the Mycobacterium tuberculosis gene encoding alpha-d-glucose-1-phosphate thymidylyltransferase. Microbiology 143:937–945
    [Google Scholar]
  28. Madduri K, Waldron C., Merlo D. J. 2001; Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa . J Bacteriol 183:5632–5638
    [Google Scholar]
  29. Malone T, Blumenthal R. M., Cheng X. 1995; Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 253:618–632
    [Google Scholar]
  30. McNeil M, Daffé M., Brennan P. J. 1990; Evidence for the nature of the link between the arabinogalactan and peptidoglycan components of mycobacterial cell walls. J Biol Chem 265:18200–18206
    [Google Scholar]
  31. Merson-Davies L. A., Cundliffe E. 1994; Analysis of five tylosin biosynthetic genes from the tylLBA region of the Streptomyces fradiae genome. Mol Microbiol 13:349–355
    [Google Scholar]
  32. Mills J. A, McNeil M. R, Belisle J. T, Jacobs W. R., Brennan P. J. 1994; Loci of Mycobacterium avium ser2 gene cluster and their functions. J Bacteriol 176:4803–4808
    [Google Scholar]
  33. Patallo E. P, Blanco G, Fischer C, Brana A. F, Rohr J, Mendez C., Salas J. A. 2001; Deoxysugar methylation during biosynthesis of the antitumor polyketide elloramycin by Streptomyces olivaceus. Characterization of three methyltransferase genes. J Biol Chem 276:18765–18774
    [Google Scholar]
  34. Patterson J, McConville M, Haites R, Coppel R., Billman-Jacobe H. 2000; Identification of a methyltransferase from Mycobacterium smegmatis involved in glycopeptidolipid synthesis. J Biol Chem 275:24900–24906
    [Google Scholar]
  35. Pelicic V, Reyrat J. M., Gicquel B. 1996; Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178:1197–1199
    [Google Scholar]
  36. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313
    [Google Scholar]
  37. Recht J., Kolter R. 2001; Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis . J Bacteriol 183:5718–5724
    [Google Scholar]
  38. Recht J, Martinez A, Torello S., Kolter R. 2000; Genetic analysis of sliding motility in Mycobacterium smegmatis . J Bacteriol 182:4348–4351
    [Google Scholar]
  39. Sambrook J, Fritsch E. F., Maniatis T. 1989 Molecular Cloning. A Laboratory Manual,, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G., Puhler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73
    [Google Scholar]
  41. Schupp T, Toupet C, Cluzel B, Neff S, Hill S, Beck J. J., Ligon J. M. 1995; A Sorangium cellulosum (myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes. J Bacteriol 177:3673–3679
    [Google Scholar]
  42. Snapper S. B, Melton R. E, Mustafa S, Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919
    [Google Scholar]
  43. Steffensky M, Muhlenweg A, Wang Z. X, Li S. M., Heide L. 2000; Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 44:1214–1222
    [Google Scholar]
  44. Stevenson G, Neal B, Liu D, Hobbs M, Packer N. H, Batley M, Redmond J. W, Lindquist L., Reeves P. 1994; Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. J Bacteriol 176:4144–4156
    [Google Scholar]
  45. Stover C. K, de la Cruz V. F, Fuerst T. R. 10 other authors 1991; New use of BCG for recombinant vaccines. Nature 351:456–460
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-3079
Loading
/content/journal/micro/10.1099/00221287-148-10-3079
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error