1887

Abstract

Regulation of the expression of heat-shock proteins plays an important role in the pathogenesis of . The heat-shock response of bacteria involves genome-wide changes in gene expression. A combination of targeted mutagenesis and whole-genome expression profiling was used to characterize transcription factors responsible for control of genes encoding the major heat-shock proteins of . Two heat-shock regulons were identified. HspR acts as a transcriptional repressor for the members of the Hsp70 (DnaK) regulon, and HrcA similarly regulates the Hsp60 (GroE) response. These two specific repressor circuits overlap with broader transcriptional changes mediated by alternative sigma factors during exposure to high temperatures. Several previously undescribed heat-shock genes were identified as members of the HspR and HrcA regulons. A novel HspR-controlled operon encodes a member of the low-molecular-mass α-crystallin family. This protein is one of the most prominent features of the heat-shock response and is related to a major antigen induced in response to anaerobic stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-3129
2002-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1483129a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-3129&mimeType=html&fmt=ahah

References

  1. Asea A, Kraeft S. K, Kurt-Jones E. A, Stevenson M. A, Chen L. B, Finberg R. W, Koo G. C., Calderwood S. K. 2000; HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442
    [Google Scholar]
  2. Bucca G, Brassington A. M, Schonfeld H. J., Smith C. P. 2000; The HspR regulon of Streptomyces coelicolor : a role for the DnaK chaperone as a transcriptional co-repressor. Mol Microbiol 38:1093–1103
    [Google Scholar]
  3. Castellino F, Boucher P. E, Eichelberg K, Mayhew M, Rothman J. E, Houghton A. N., Germain R. N. 2000; Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 191:1957–1964
    [Google Scholar]
  4. Chang Z, Primm T. P, Jakana J, Lee I. H, Serysheva I, Chiu W, Gilbert H. F., Quiocho F. A. 1996; Mycobacterium tuberculosis 16-kDa antigen (Hsp16·3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J Biol Chem 271:7218–7223
    [Google Scholar]
  5. Cole S. T, Brosch R, Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  6. Cunningham A. F., Spreadbury C. L. 1998; Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton α-crystallin homolog. J Bacteriol 180:801–808
    [Google Scholar]
  7. Fernandes N. D, Wu Q. L, Kong D, Puyang X, Garg S., Husson R. N. 1999; A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress. J Bacteriol 181:4266–4274
    [Google Scholar]
  8. Grandvalet C, de Crecy-Lagard V., Mazodier P. 1999; The ClpB ATPase of Streptomyces albus G belongs to the HspR heat shock regulon. Mol Microbiol 31:521–532
    [Google Scholar]
  9. Grossman A. D, Erickson J. W., Gross C. A. 1984; The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383–390
    [Google Scholar]
  10. Hartl F. U. 1996; Molecular chaperones in cellular protein folding. Nature 381:571–579
    [Google Scholar]
  11. Hecker M, Schumann W., Volker U. 1996; Heat-shock and general stress response in Bacillus subtilis . Mol Microbiol 19:417–428
    [Google Scholar]
  12. Helmann J. D. 1999; Anti-sigma factors. Curr Opin Microbiol 2:135–141
    [Google Scholar]
  13. Hinds J, Mahenthiralingam E, Kempsell K. E, Duncan K, Stokes R. W, Parish T., Stoker N. G. 1999; Enhanced gene replacement in mycobacteria. Microbiology 145:519–527
    [Google Scholar]
  14. Lee B. Y., Horwitz M. A. 1995; Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis . J Clin Invest 96:245–249
    [Google Scholar]
  15. Manganelli R, Dubnau E, Tyagi S, Kramer F. R., Smith I. 1999; Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis . Mol Microbiol 31:715–724
    [Google Scholar]
  16. Manganelli R, Voskuil M. I, Schoolnik G. K., Smith I. 2001; The Mycobacterium tuberculosis ECF sigma factor σE: role in global gene expression and survival in macrophages. Mol Microbiol 41:423–437
    [Google Scholar]
  17. Monahan I, Betts J, Banerjee D., Butcher P. 2001; Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147:459–471
    [Google Scholar]
  18. Narberhaus F. 1999; Negative regulation of bacterial heat shock genes. Mol Microbiol 31:1–8
    [Google Scholar]
  19. Parish T., Stoker N. G. 1997; Development and use of a conditional antisense mutagenesis system in mycobacteria. FEMS Microbiol Lett 154:151–157
    [Google Scholar]
  20. Patel B. K, Banerjee D. K., Butcher P. D. 1991; Characterization of the heat shock response in Mycobacterium bovis BCG. J Bacteriol 173:7982–7987
    [Google Scholar]
  21. Raman S, Song T, Puyang X, Bardarov S, Jacobs W. R. Jr, Husson R. N. 2001; The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis . J Bacteriol 183:6119–6125
    [Google Scholar]
  22. Sherman D. R, Voskuil M, Schnappinger D, Liao R, Harrell M. I., Schoolnik G. K. 2001; Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci USA 98:7534–7539
    [Google Scholar]
  23. Stewart G. R, Snewin V. A, Walzl G. 7 other authors 2001; Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nat Med 7:732–737
    [Google Scholar]
  24. Stover C. K, de la Cruz V. F, Bansal G. P, Hanson M. S, Fuerst T. R, Jacobs W. R. Jr, Bloom B. R. 1992; Use of recombinant BCG as a vaccine delivery vehicle. Adv Exp Med Biol 327:175–182
    [Google Scholar]
  25. Sudre P, ten Dam G., Kochi A. 1992; Tuberculosis: a global overview of the situation today. Bull W H O 70:149–159
    [Google Scholar]
  26. Suto R., Srivastava P. K. 1995; A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588
    [Google Scholar]
  27. Wards B. J., Collins D. M. 1996; Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria. FEMS Microbiol Lett 145:101–105
    [Google Scholar]
  28. Wilson M, DeRisi J, Kristensen H. H, Imboden P, Rane S, Brown P. O., Schoolnik G. K. 1999; Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci USA 96:12833–12838
    [Google Scholar]
  29. Wilson M, Voskuil M, Schnappinger D., Schoolnik G. K. 2001; Functional genomics of Mycobacterium tuberculosis using DNA microarrays. In Methods in Molecular Medicine vol. 54Mycobacterium tuberculosis Protocols pp 335–357 Edited by Parish T., Stoker N. G. Totowa, NJ: Humana Press;
    [Google Scholar]
  30. Yang H, Huang S, Dai H, Gong Y, Zheng C., Chang Z. 1999; The Mycobacterium tuberculosis small heat shock protein Hsp16·3 exposes hydrophobic surfaces at mild conditions: conformational flexibility and molecular chaperone activity. Protein Sci 8:174–179
    [Google Scholar]
  31. Young D. B., Garbe T. R. 1991; Heat shock proteins and antigens of Mycobacterium tuberculosis . Infect Immun 59:3086–3093
    [Google Scholar]
  32. Yuan Y, Crane D. D., Barry C. E. 3rd 1996; Stationary phase-associated protein expression in Mycobacterium tuberculosis : function of the mycobacterial α-crystallin homolog. J Bacteriol 178:4484–4492
    [Google Scholar]
  33. Yuan Y, Crane D. D, Simpson R. M, Zhu Y. Q, Hickey M. J, Sherman D. R., Barry C. E. 3rd 1998; The 16-kDa α-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci USA 95:9578–9583
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-3129
Loading
/content/journal/micro/10.1099/00221287-148-10-3129
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error