1887

Abstract

infection elicits an aggressive inflammatory response that the bacterium is able to resist by virtue of its well-adapted antioxidant defence mechanisms. Catalase (KatA) appears to be a key enzyme in this resistance. Upstream of , a low-affinity ferric uptake regulator (Fur)-box has been identified. Downstream of , an ORF (HP0874) with no known function has also been identified. Non-polar isogenic mutants of , and HP0874 were constructed by allelic exchange. The impact of these mutations on the catalase activities and bacterial viability following exposure to hydrogen peroxide was studied. Concurrently, the effect of variation in the iron content of the media used to grow the cells was determined. The data showed that catalase-deficient isolates of were hypersensitive to hydrogen peroxide, whereas wild-type cells could resist ∼∼100 mM hydrogen peroxide. Fur-deficient mutants and cells grown on low-iron-containing medium showed a distinct reduction in catalase activity and increased sensitivity to hydrogen peroxide. The data suggest a direct or indirect effect of Fur and iron on the activity of catalase. HP0874-deficient mutants showed no reduction in catalase activity but showed an increased sensitivity to hydrogen peroxide. That is, the protein encoded by HP0874 appears to have a role in resistance to hydrogen peroxide not directly related to catalase activity. This is the first report of a functional relationship of the product of this ORF. There is evidence of protein–protein interaction between KatA and the product encoded by HP0874, and the name ‘atA-ssociated rotein’ (KapA) is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3813
2002-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483813a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3813&mimeType=html&fmt=ahah

References

  1. Alm R., Ling L., Moir D. 20 other authors 1999; Genomic sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori . Nature 397:176–180 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Beers R., Sizer I. 1952; A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140
    [Google Scholar]
  4. Bereswill S., Lichte F., Vey T., Fassbinder F., Kist M. 1998; Cloning and characterization of the fur gene from Helicobacter pylori . FEMS Microbiol Lett 159:193–200 [CrossRef]
    [Google Scholar]
  5. Bereswill S., Greiner S., Van Vliet A. H. M., Waidner B., Fassbinder F., Schiltz E., Kusters J. G., Kist M. 2000; Regulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori . J Bacteriol 182:5948–5953 [CrossRef]
    [Google Scholar]
  6. Cadenas E. 1989; Biochemistry of oxygen toxicity. Annu Rev Biochem 58:79–110 [CrossRef]
    [Google Scholar]
  7. Cha M. K., Kim H. K., Kim I. H. 1995; Thioredoxin-linked ‘thiol peroxidase’ from the periplasmic space of Escherichia coli . J Biol Chem 270:28635–28641 [CrossRef]
    [Google Scholar]
  8. Chan M. K., Mukund S., Kletzin A., Adams M. W. W., Rees D. C. 1995; Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267:1463–1469 [CrossRef]
    [Google Scholar]
  9. Copass M., Grandi G., Rappuoli R. 1997; Introduction of unmarked mutations in the Helicobacter pylori vacA gene with a sucrose sensitivity marker. Infect Immun 65:1949–1952
    [Google Scholar]
  10. Crabtree J. 1996; Immune and inflammatory responses to Helicobacter pylori infection. Scand J Gastroenterol 31:3–10
    [Google Scholar]
  11. Delany I., Spohn G., Rappuoli R., Scarlato V. 2001a; The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori . Mol Microbiol 42:1297–1309
    [Google Scholar]
  12. Delany I., Pacheco A. B. F., Spohn G., Rappuoli R., Scarlato V. 2001b; Iron-dependent transcription of the frpB gene of Helicobacter pylori is controlled by the Fur repressor protein. J Bacteriol 183:4932–4937 [CrossRef]
    [Google Scholar]
  13. Dixon M. 1994; Pathophysiology of Helicobacter pylori infection. Scand J Gastroenterol Suppl 29:7–10
    [Google Scholar]
  14. Eaton K., Brooks C., Morgan D., Krakowka S. 1991; Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic pigs. Infect Immun 59:2470–2475
    [Google Scholar]
  15. Ernst P. 1999; Review article: the role of inflammation in the pathogenesis of gastric cancer. Aliment Pharmacol Ther 13:13–18 [CrossRef]
    [Google Scholar]
  16. Farr S., Touati D., Kogoma T. 1988; Effects of oxygen stress on membrane functions in Escherichia coli : role of HPI catalase. J Bacteriol 170:1837–1842
    [Google Scholar]
  17. Feldman R. A., Eccersley A. J. P., Hardie J. M. 1997; Transmission of Helicobacter pylori . Curr Opin Gastroenterol 13S1:8–12
    [Google Scholar]
  18. Graham D. 1989; Campylobacter pylori and peptic ulcer disease. Gastroenterology 96:615–625
    [Google Scholar]
  19. Grant K. A., Park S. F. 1995; Molecular characterisation of katA from Campylobacter jejuni and generation of a catalase-deficient mutant of Campylobacter coli by interspecific allelic exchange. Microbiology 141:1369–1376 [CrossRef]
    [Google Scholar]
  20. Hahn J., Oh S., Roe J. 2000; Regulation of furA and catC operon, encoding a ferric uptake regulator homologue and catalase–peroxidase, respectively, in Stretomyces coelicolor A3(2. J Bacteriol 182:3767–3774 [CrossRef]
    [Google Scholar]
  21. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  22. Harris A. G., Hazell S. L. 2000; Helicobacter pylori : from discovery to genome. In Recent Advances in Microbiology pp 213–243 Edited by Ashe V. Hawkesburn, Australia: Control Publications;
    [Google Scholar]
  23. Hassett D. J., Sokol P. A., Howell M. L., Ma J. F., Schweizer H. T., Ochsner U. A., Vasil M. L. 1996; Ferric uptake regulator ( fur ) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J Bacteriol 178:3996–4003
    [Google Scholar]
  24. Hazell S. L., Borody T., Gal A., Lee A. 1987; Campylobacter pyloridis gastritis. I. Detection of urease as a marker of bacterial colonization and gastritis. Am J Gastroenterol 82:292–296
    [Google Scholar]
  25. Hazell S. L., Markesich D. C., Evans D. J., Evans D. G., Graham D. Y. 1989; Influence of media supplements on growth and survival of Campylobacter pylori . Eur J Clin Microbiol Infect Dis 8:597–602 [CrossRef]
    [Google Scholar]
  26. Hazell S., Evans D. Jr, Graham D. 1991; Helicobacter pylori catalase. J Gen Microbiol 137:57–61 [CrossRef]
    [Google Scholar]
  27. Hazell S. L., Harris A. G., Trend M. A. 2001 In Evasion and Avoidance of the Toxic Effects of Oxygen pp 167–175 Edited by Mobley H. L. T., Mendz G. L., Hazell S. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Herbig A. F., Helmann J. D. 2001; Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41:849–859
    [Google Scholar]
  29. Horsburgh M. J., Ingham E., Foster S. J. 2001; In Staphylococcus aureus , Fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 183:468–475 [CrossRef]
    [Google Scholar]
  30. Krapp A. R., Tognetti V. B., Carrillo N., Acevedo A. 1997; The role of ferredoxin-NADP+ reductase in the concerted cell defense against oxidative damage – studies using Escherichia coli mutants and cloned plant genes. Eur J Biochem 249:556–563 [CrossRef]
    [Google Scholar]
  31. Ma J. F., Ochsner U. A., Klotz M. G. 7 other authors 1999; Bacterioferretin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa . J Bacteriol 181:3730–3742
    [Google Scholar]
  32. Manos J. 1998 Molecular characterisation of the Helicobacter pylori catalase PhD thesis School of Microbiology and Immunology, University of New South Wales; Sydney:
    [Google Scholar]
  33. Manos J., Kolesnikow T., Hazell S. L. 1997; An investigation of the molecular basis of the spontaneous occurrence of a catalase negative phenotype in Helicobacter pylori . Helicobacter 3:28–38
    [Google Scholar]
  34. Massé E., Gottesman S. 2002; A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli . Proc Natl Acad Sci USA 99:4620–4625 [CrossRef]
    [Google Scholar]
  35. May B. J., Zhang Q., Li L. L., Paustian M. L., Whittam T. S., Kapur V. 2001; Complete genomic sequence of Pasteurella multocida , Pm70. Proc Natl Acad Sci USA 98:3460–3465 [CrossRef]
    [Google Scholar]
  36. Mendz G. L., Holmes E. M., Ferrero R. L. 1998; In situ characterization of Helicobacter pylori arginase. Biochim Biophys Acta 1388465–477 [CrossRef]
    [Google Scholar]
  37. Mooney C., Keenan J., Munster D., Wilson I., Allardyce R., Bagshaw P., Chapman B., Chadwick V. 1991; Neutrophil activation by Helicobacter pylori . Gut 32:853–857 [CrossRef]
    [Google Scholar]
  38. Naik S. N., Hassan H. M. 1992; Use of site-directed mutagenesis to identify an upstream regulatory sequence of sodA gene in Escherichia coli K12. Proc Natl Acad Sci USA 87:2618–2622
    [Google Scholar]
  39. Niederhoffer E. C., Naranjo C. M., Bradley K. L., Fee J. A. 1990; Control of Escherichia coli superoxide dismutase ( sodA and sodB ) genes by the ferric uptake regulation ( fur ) locus. J Bacteriol 172:1930–1938
    [Google Scholar]
  40. Nunoshiba T., Obata F., Boss A. C., Oikawa S., Mori T., Kawanishi S., Yamamoto K. 1999; Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli . J Biol Chem 274:34832–34837 [CrossRef]
    [Google Scholar]
  41. Odenbreit S., Wieland B., Haas R. 1996; Cloning and genetic characterisation of Helicobacter pylori catalase and construction of a catalase deficient mutant. J Bacteriol 178:6960–6967
    [Google Scholar]
  42. Olczak A. A., Olson J. W., Maier R. J. 2002; Oxidative stress resistance mutants of Helicobacter pylori . J Bacteriol 184:3186–3193 [CrossRef]
    [Google Scholar]
  43. Parsonnet J., Friedman G., Vandersteen D., Chang Y., Vogelman J., Orenteich N., Sibley R. 1991; Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325:1127–1131 [CrossRef]
    [Google Scholar]
  44. Rain J., Selig L., De Reuse H. 10 other authors 2001; The protein–protein interaction map of Helicobacter pylori . Nature 409:211–215 [CrossRef]
    [Google Scholar]
  45. Ramarao N., Gray-Owen S. D., Meyer T. F. 2000; Helicobacter pylori induces but survives the extracellular release of oxygen radicals from professional phagocytes using its catalase activity. Mol Microbiol 36:103–113
    [Google Scholar]
  46. Salama N. R., Guillemin K., McDaniel T. K., Sherlock G., Tompkins L., Falkow S. 2000; A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci USA 97:14668–14673 [CrossRef]
    [Google Scholar]
  47. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Laboratory;
    [Google Scholar]
  48. Seyler R. W., Olson J. W., Maier R. J. 2001; Superoxide-dismutase deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonisation. Infect Immun 69:4034–4040 [CrossRef]
    [Google Scholar]
  49. Skirrow M. 1977; Campylobacter enteritis: a ‘new’ disease. Br Med J 2:9–11 [CrossRef]
    [Google Scholar]
  50. Spiegelhalder C., Gerstenecker B., Kersten A., Schiltz E., Kist M. 1993; Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene. Infect Immun 61:5315–5325
    [Google Scholar]
  51. Stojiljkovic I., Baumler A., Hantke K. 1994; Fur regulation in Gram negative bacteria: identification and characterisation of new iron-regulated Escherichia coli genes by a Fur titration assay. J Mol Biol 236:531–545 [CrossRef]
    [Google Scholar]
  52. Tillet D., Burns B., Neilan B. 2000; Optimised rapid amplification of cDNA ends (RACE) for mapping bacterial mRNA transcripts. Biotechniques 28:448–456
    [Google Scholar]
  53. Tomb J., White O., Kerlavage A. 39 other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori . Nature 388:539–547 [CrossRef]
    [Google Scholar]
  54. Uemura N., Okamoto S., Yamamoto S., Matsumara N., Yamaguchi S., Yamakido M., Taniyama K., Sasaki N., Schlemper R. J. 2001; Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345:784–789 [CrossRef]
    [Google Scholar]
  55. Van Vliet A. H. M., Wooldridge K. G., Ketley J. M. 1998; Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298
    [Google Scholar]
  56. Van Vliet A. H. M., Baillon M. A., Penn C. W., Ketley J. M. 1999; Campylobacter jejuni contains two Fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol 181:6371–6376
    [Google Scholar]
  57. Velayudhan J., Hughes N. J., McColm A. A., Bagshaw J., Clayton C. L., Andrews S. C., Kelly D. J. 2000; Iron acquisition and virulence in Helicobacter pylori : a major role for FeoB, a high affinity ferrous iron transporter. Mol Microbiol 37:274–286 [CrossRef]
    [Google Scholar]
  58. Wai S. N., Nakayama K., Umene K., Moriya T., Amako K. 1996; Construction of a ferritin-deficient mutant of Campylobacter jejuni : contribution of ferritin to iron storage and oxidative stress. Mol Microbiol 20:1127–1134 [CrossRef]
    [Google Scholar]
  59. Wan X. Y., Zhou Y., Yan Z. Y., Wang H. L., Hou Y. D., Jin D. Y. 1997; Scavengase p20: a novel family of bacterial antioxidant enzymes. FEBS Lett 407:32–36 [CrossRef]
    [Google Scholar]
  60. Westblom T., Phadnis S., Langenberg W., Yoneda K., Madan E., Midkiff B. 1992; Catalase negative mutants of Helicobacter pylori . Eur J Clin Microbiol Infect Dis 11:522–526 [CrossRef]
    [Google Scholar]
  61. Wotherspoon A., Ortitz-Hidalgo C., Falzon M., Isaacson P. 1991; Helicobacter pylori associated gastritis and B-cell gastric lymphoma. Lancet 338:1175–1176 [CrossRef]
    [Google Scholar]
  62. Zheng M., Doan B., Schneider T. D., Storz G. 1999; OxyR and SoxRS regulation of fur. J Bacteriol 181:4639–4643
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3813
Loading
/content/journal/micro/10.1099/00221287-148-12-3813
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error