1887

Abstract

possesses two different flagellin genes, and , which are unlinked on the chromosome and transcribed from σ and σ promoters, respectively. Both flagellins are hypothesized to be present in varying amounts in the flagellum, to adapt the physical properties of the flagellar filament to different environmental conditions. The influence of growth phase and environmental conditions on the transcriptional regulation of both flagellin genes has not been investigated so far. Using three different reporter genes as well as Northern blot analyses and RT-PCR, it was determined that both flagellin genes are transcribed in a growth phase-dependent fashion. Growth phase dependency was also found for the flagellar basal body export apparatus gene which is involved in the transcriptional regulation of both flagellin genes. Peak transcription of and occurred earlier during the growth phase than that of , possibly consistent with a hook-proximal localization of the minor flagellin FlaB. Of the reporter gene systems, luciferase fusions reflected best the dynamic regulation patterns of . flagellin genes. Growth phase had the strongest influence on transcriptional control of and , while differences in supplements to a rich culture medium had only a modest modulatory effect on flagellin gene transcription.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3827
2002-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483827a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3827&mimeType=html&fmt=ahah

References

  1. Aizawa S.-I. 2000; Flagella. In Encyclopedia of Microbiology pp 380–389 Edited by Lederberg J. New York, NY: Academic Press;
    [Google Scholar]
  2. Allan E., Clayton C. L., McLaren A., Wallace D. M., Wren B. W. 2001; Characterization of the low-pH responses of Helicobacter pylori using genomic DNA arrays. Microbiology 147:2285–2292
    [Google Scholar]
  3. Allen K. J., Griffiths M. W. 2001; Effect of environmental and chemotactic stimuli on the activity of the Campylobacter jejuni flaA sigma(28) promoter. FEMS Microbiol Lett 205:43–48
    [Google Scholar]
  4. Alm R. A., Guerry P., Trust T. J. 1993; The Campylobacter sigma 54 flaB flagellin promoter is subject to environmental regulation. J Bacteriol 175:4448–4455
    [Google Scholar]
  5. Alm R. A., Ling L.-S. L., Moir D. T. 20 other authors 1999; Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori . Nature 397:176–180 [CrossRef]
    [Google Scholar]
  6. Anderson D. K., Ohta N., Wu J., Newton A. 1995; Regulation of the Caulobacter crescentus rpoN gene and function of the purified sigma 54 in flagellar gene transcription. Mol Gen Genet 246:697–706 [CrossRef]
    [Google Scholar]
  7. Andrutis K. A., Fox J. G., Schauer D. B., Marini R. P., Li X., Yan L., Josenhans C., Suerbaum S. 1997; Infection of the ferret stomach by isogenic flagellar mutant strains of Helicobacter mustelae . Infect Immun 65:1962–1966
    [Google Scholar]
  8. Baldwin T. O., Berends T., Bunch T. A., Holzman T. F., Rausch S. K., Shamansky L., Treat M. L., Ziegler M. M. 1984; Cloning of the luciferase structural genes from Vibrio harveyi and expression of bioluminescence in Escherichia coli . Biochemistry 23:3663–3667 [CrossRef]
    [Google Scholar]
  9. Beier D., Spohn G., Rappuoli R., Scarlato V. 1998; Functional analysis of the Helicobacter pylori principal sigma subunit of RNA polymerase reveals that the spacer region is important for efficient transcription. Mol Microbiol 30:121–134 [CrossRef]
    [Google Scholar]
  10. Cormack B. P., Valdivia R., Falkow S. 1996; FACS-optimized mutants of the green fluorescent protein (GFP. Gene 173:33–38 [CrossRef]
    [Google Scholar]
  11. Cussac V., Ferrero R. L., Labigne A. 1992; Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J Bacteriol 174:2466–2473
    [Google Scholar]
  12. Delany I., Spohn G., Rappuoli R., Scarlato V. 2001; The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori . Mol Microbiol 42:1297–1309
    [Google Scholar]
  13. De Lorenzo V., Herrero M., Jakubzik U., Timmis K. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  14. de Vries N., Kuipers E. J., Kramer N. E., van Vliet A. H., Bijlsma J. J., Kist M., Bereswill S., Vandenbroucke-Grauls C. M., Kusters J. G. 2001; Identification of environmental stress-regulated genes in Helicobacter pylori by a lacZ reporter gene fusion system. Helicobacter 6:300–309 [CrossRef]
    [Google Scholar]
  15. Eaton K. A., Suerbaum S., Josenhans C., Krakowka S. 1996; Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun 64:2445–2448
    [Google Scholar]
  16. Ferrero R. L., Cussac V., Courcoux P., Labigne A. 1992; Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. J Bacteriol 174:4212–4217
    [Google Scholar]
  17. Foynes S., Dorrell N., Ward S. J., Stabler R. A., McColm A. A., Rycroft A. N., Wren B. W. 2000; Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect Immun 68:2016–2023 [CrossRef]
    [Google Scholar]
  18. Grunenfelder B., Rummel G., Vohradsky J., Roder D., Langen H., Jenal U. 2001; Proteomic analysis of the bacterial cell cycle. Proc Natl Acad Sci USA 98:4681–4686 [CrossRef]
    [Google Scholar]
  19. Hazell S. L., Lee A., Brady L., Hennessy W. 1986; Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J Infect Dis 153:658–663 [CrossRef]
    [Google Scholar]
  20. Heuner K., Brand B. C., Hacker J. 1999; The expression of the flagellum of Legionella pneumophila is modulated by different environmental factors. FEMS Microbiol Lett 175:69–77 [CrossRef]
    [Google Scholar]
  21. Jagannathan A., Constantinidou C., Penn C. W. 2001; Roles of rpoN , fliA , and flgR in expression of flagella in Campylobacter jejuni . J Bacteriol 183:2937–2942 [CrossRef]
    [Google Scholar]
  22. Josenhans C., Suerbaum S. 2001; Motility and chemotaxis. In Helicobacter pylori: Molecular and Cellular Biology pp 171–184 Edited by Achtman M., Suerbaum S. Wymondham: Horizon Scientific Press;
    [Google Scholar]
  23. Josenhans C., Labigne A., Suerbaum S. 1995a; Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species. J Bacteriol 177:3010–3020
    [Google Scholar]
  24. Josenhans C., Labigne A., Suerbaum S. 1995b; Reporter gene analyses show that expression of both H. pylori flagellins is dependent on the growth phase. Gut 37 :Suppl. 1A62 (abstract) [CrossRef]
    [Google Scholar]
  25. Josenhans C., Friedrich S., Suerbaum S. 1998; Green fluorescent protein as a novel marker and reporter system in Helicobacter sp. FEMS Microbiol Lett 161:263–273 [CrossRef]
    [Google Scholar]
  26. Josenhans C., Ferrero R. L., Labigne A., Suerbaum S. 1999; Cloning and allelic exchange mutagenesis of two flagellin genes from Helicobacter felis . Mol Microbiol 33:350–362 [CrossRef]
    [Google Scholar]
  27. Josenhans C., Niehus E., Amersbach S., Hörster A., Betz C., Drescher B., Hughes K. T., Suerbaum S. 2002; Functional characterization of the antagonistic flagellar late regulators FliA and FlgM of Helicobacter pylori and their effects on the H. pylori transcriptome. Mol Microbiol 43:307–322 [CrossRef]
    [Google Scholar]
  28. Joyce E. A., Gilbert J. V., Eaton K. A., Plaut A., Wright A. 2001; Differential gene expression from two transcriptional units in the cag pathogenicity island of Helicobacter pylori . Infect Immun 69:4202–4209 [CrossRef]
    [Google Scholar]
  29. Kalir S., McClure J., Pabbaraju K., Southward C., Ronen M., Leibler S., Surette M. G., Alon U. 2001; Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292:2080–2083 [CrossRef]
    [Google Scholar]
  30. Karita M., Tummuru M. K., Wirth H. P., Blaser M. J. 1996; Effect of growth phase and acid shock on Helicobacter pylori cagA expression. Infect Immun 64:4501–4507
    [Google Scholar]
  31. Kihara M., Minamino T., Yamaguchi S., Macnab R. M. 2001; Intergenic suppression between the flagellar MS ring protein FliF of Salmonella and FlhA, a membrane component of its export apparatus. J Bacteriol 183:1655–1662 [CrossRef]
    [Google Scholar]
  32. Kirchner G., Roberts J. L., Gustafson G. D., Ingolia T. D. 1989; Active bacterial luciferase from a fused gene: expression of a Vibrio harveyi luxAB translational fusion in bacteria, yeast and plant cells. Gene 81:349–354 [CrossRef]
    [Google Scholar]
  33. Kostrzynska M., Betts J. D., Austin J. W., Trust T. J. 1991; Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J Bacteriol 173:937–946
    [Google Scholar]
  34. Labigne-Roussel A., Courcoux P., Tompkins L. 1988; Gene disruption and replacement as a feasible approach for mutagenesis of Campylobacter jejuni . J Bacteriol 170:1704–1708
    [Google Scholar]
  35. Laub M. T., McAdams H. H., Feldblyum T., Fraser C. M., Shapiro L. 2000; Global analysis of the genetic network controlling a bacterial cell cycle. Science 290:2144–2148 [CrossRef]
    [Google Scholar]
  36. Leying H., Suerbaum S., Geis G., Haas R. 1992; Cloning and genetic characterization of a Helicobacter pylori flagellin gene. Mol Microbiol 6:2863–2874 [CrossRef]
    [Google Scholar]
  37. Minamino T., Macnab R. M. 2000; Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol Microbiol 35:1052–1064 [CrossRef]
    [Google Scholar]
  38. Minamino T., Iino T., Kutsukake K. 1994; Molecular characterization of the Salmonella typhimurium flhB operon and its protein products. J Bacteriol 176:7630–7637
    [Google Scholar]
  39. Prouty M. G., Correa N. E., Klose K. E. 2001; The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae . Mol Microbiol 39:1595–1609 [CrossRef]
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schmitz A., Josenhans C., Suerbaum S. 1997; Cloning and characterization of the Helicobacter pylori flbA gene, which codes for a membrane protein involved in coordinated expression of flagellar genes. J Bacteriol 179:987–997
    [Google Scholar]
  42. Spohn G., Scarlato V. 1999; Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog. J Bacteriol 181:593–599
    [Google Scholar]
  43. Spohn G., Scarlato V. 2001; Motility, chemotaxis, and flagella. In Helicobacter pylori. Physiology and Genetics pp 239–248 Edited by Mobley H. T. L., Mendz G. L., Hazell S. L. Washington: American Society or Microbiology;
    [Google Scholar]
  44. Spohn G., Beier D., Rappuoli R., Scarlato V. 1997; Transcriptional analysis of the divergent cagAB genes encoded by the pathogenicity island of Helicobacter pylori . Mol Microbiol 26:361–372 [CrossRef]
    [Google Scholar]
  45. Suerbaum S., Josenhans C., Labigne A. 1993; Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA - and flaB -negative mutants by electroporation-mediated allelic exchange. J Bacteriol 175:3278–3288
    [Google Scholar]
  46. Tomb J.-F., White O., Kerlavage. 39 other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori . Nature 388:539–547 [CrossRef]
    [Google Scholar]
  47. Vanet A., Marsan L., Labigne A., Sagot M. F. 2000; Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori sigma(80) family of promoter signals. J Mol Biol 297:335–353 [CrossRef]
    [Google Scholar]
  48. van Vliet A. H., Kuipers E. J., Waidner B. 7 other authors 2001; Nickel-responsive induction of urease expression in Helicobacter pylori is mediated at the transcriptional level. Infect Immun 69:4891–4897 [CrossRef]
    [Google Scholar]
  49. Worku M. L., Sidebotham R. L., Walker M. M., Keshavarz T., Karim Q. N. 1999; The relationship between Helicobacter pylori motility, morphology and phase of growth: implications for gastric colonization and pathology. Microbiology 145:2803–2811
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3827
Loading
/content/journal/micro/10.1099/00221287-148-12-3827
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error