1887

Abstract

The kinetics of binding, uptake and degradation of bacteria by vegetative amoeba using expressing the recombinant fluorescent protein DsRed have been characterized. There are significant advantages to using DsRed-expressing bacteria for phagocytosis assays. Stable expression of the fluorescent protein, DsRed, provides living bacteria with a bright internal fluorescent signal that is degradable in the phagolysosomal pathway. Unlike assays with chemically labelled bacteria or latex beads, the bacteria are alive and possess a natural, unaltered external surface for receptor interaction. cells rapidly bind and phagocytose DsRed bacteria. Pulse–chase experiments show that the signal derived from DsRed is degraded with a half-life of approximately 45 min. To distinguish internalized bacteria from those bound to the surface, an assay was developed in which sodium azide was used to release surface-bound particles. Surprisingly, surface particle release appears to be independent of myosin II function. Using this assay it was shown that the uptake of bacteria into cells is extremely rapid. After 1 min incubation, 20% of the signal is derived from internalized bacteria. The proportion of the signal from internalized bacteria increases gradually and reaches 50% at steady state. This assay will be useful in investigations of the molecular machinery of phagocytosis and post-internalization vesicle trafficking.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-413
2002-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480413a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-413&mimeType=html&fmt=ahah

References

  1. Aderem A., Underhill D. M. 1999; Mechanism of phagocytosis in macrophages. Annu Rev Immunol 17:593–623 [CrossRef]
    [Google Scholar]
  2. Aizawa H., Fukui Y., Yahara I. 1997; Live dynamics of Dictyostelium cofilin suggests a role in remodeling actin latticework into bundles. J Cell Sci 110:2333–2344
    [Google Scholar]
  3. Aubry L., Klein G., Martiel J. L., Satre M. 1993; Kinetics of endosomal pH evolution in Dictyostelium discoideum amoebae. J Cell Sci 105:861–866
    [Google Scholar]
  4. Baird G. S., Zacharias D. A., Tsien R. Y. 2000; Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11984–11989 [CrossRef]
    [Google Scholar]
  5. Bringhurst R. M., Cardon Z. G., Gage D. J. 2001; Galactosides in the rhizosphere: Utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci USA 98:4540–4545 [CrossRef]
    [Google Scholar]
  6. Cohen J. C., Bacon R., Clarke M., Joiner K., Mellman I. 1994; Dictyostelium discoideum mutants with conditional defects in phagocytosis. J Cell Biol 126:955–966 [CrossRef]
    [Google Scholar]
  7. Cornillion S., Pech E., Benghezal M., Ravanel K., Gaynor E., Letourneur F., Brucker F., Cosson P. 2000; Phg1p is a nine-transmembrane protein superfamily member involved in Dictyostelium adhesion and phagocytosis. J Biol Chem 275:34287–34292 [CrossRef]
    [Google Scholar]
  8. Franc N. C., White K., Ezekowitz R. A. 1999; Phagocytosis and development: back to the future. Curr Opin Immunol 11:47–52 [CrossRef]
    [Google Scholar]
  9. Glynn P. J. 1981; A quantitative study of the phagocytosis of Escherichia coli by myxamoebae of the slime mould Dictyostelium discoideum . Cytobios 30:153–166
    [Google Scholar]
  10. Greenberg S. 1995; Signal transduction of phagocytosis. Trends Cell Biol 5:93–99 [CrossRef]
    [Google Scholar]
  11. Greenberg S. 2001; Diversity in phagocytic signalling. J Cell Sci 114:1039–1040
    [Google Scholar]
  12. Janssen K. P., Schleicher M. 2001; Dictyostelium discoideum : A genetic model system for the study of professional phagocytes Profilin, phosphoinositides and the 1mp gene family in Dictyostelium . Biochim Biophys Acta 1525228–233 [CrossRef]
    [Google Scholar]
  13. Jungbluth A., Biegelmenn E., Humbel B., Schweiger A., Gerisch G., von Arnim V. 1994; Strong increase in the tyrosine phosphorylation of actin upon inhibition of oxidative phosphorylation: correlation with reversible rearrangements in the actin skeleton of Dictyostelium cells. J Cell Sci 107:117–125
    [Google Scholar]
  14. Knecht D. A., Cohen S. M., Loomis W. F., Lodish H. F. 1986; Developmental regulation of Dictyostelium discoideum actin gene fusions carried on low-copy and high-copy transformation vectors. Mol Cell Biol 6:3973–3983
    [Google Scholar]
  15. Kwiatkowska K., Sobota A. 1999; Signaling pathways in phagocytosis. Bio Essays 21:422–431
    [Google Scholar]
  16. Loomis W. F. 1971; Sensitivity of Dictyostelium discoideum to nucleic acid analogues. Exp Cell Res 64:484–486 [CrossRef]
    [Google Scholar]
  17. Maniak M., Rauchenberger R., Albrecht R., Murphy J., Gerisch G. 1995; Coronin involved in phagocytosis: Dynamics of particle-induced relocalization visualized by a green fluorescent protein Tag. Cell 83:915–924 [CrossRef]
    [Google Scholar]
  18. Pasternak C., Spudich J. A., Elson E. L. 1989; Capping of surface receptors and concomitant cortical tension generated by conventional myosin. Nature 341:549–551 [CrossRef]
    [Google Scholar]
  19. Rabinovitch M. 1967; The dissociation of the attachment and ingestion phases of phagocytosis by macrophages. Exp Cell Res 46:19–28 [CrossRef]
    [Google Scholar]
  20. Robinson D. N., Spudich J. A. 2000; Dynacortin, a genetic link between equatorial contractility and global shape control discovered by library complementation of a Dictyostelium discoideum cytokinesis mutant. J Cell Biol 150:823–838 [CrossRef]
    [Google Scholar]
  21. Ruppel K. M., Uyeda T. Q., Spudich J. A. 1994; Role of highly conserved lysine 130 of myosin motor domain. In vivo and in vitro characterization of site specifically mutated myosin. J Biol Chem 269:18773–18780
    [Google Scholar]
  22. Rupper A., Cardelli J. 2001; Regulation of phagocytosis and endo-phagosomal trafficking pathways in Dictyostelium discoideum . Biochim Biophys Acta 1525205–216 [CrossRef]
    [Google Scholar]
  23. Shelden E., Knecht D. A. 1995; Mutants lacking myosin II cannot resist forces generated during multicellular morphogenesis. J Cell Sci 108:1105–1115
    [Google Scholar]
  24. Stendahl O. I., Hartwig J. H., Brotschi E. A., Stossel T. P. 1980; Distribution of actin-binding protein and myosin in macrophages during spreading and phagocytosis. J Cell Biol 84:215–224 [CrossRef]
    [Google Scholar]
  25. Titus M. A. 1999; A class VII unconventional myosin is required for phagocytosis. Curr Biol 9:1297–1303 [CrossRef]
    [Google Scholar]
  26. Tuxworth R. I., Weber X., Wessels D. A., Addicks G. C., Soll D. R., Gerisch G., Titus M. A. 2001; A role for myosin VII in dynamic cell adhesion. Curr Biol 11:318–329 [CrossRef]
    [Google Scholar]
  27. Vogel G., Thilo L., Schwarz H., Steinhart R. 1980; Mechanism of phagocytosis in Dictyostelium discoideum: Phagocytosis is mediated by different recognition sites as disclosed by mutants with altered phagocytic properties. J Cell Biol 86:456–465 [CrossRef]
    [Google Scholar]
  28. Watts D. J., Ashworth J. M. 1979; Growth of myxamoebae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J 119:171–174
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-413
Loading
/content/journal/micro/10.1099/00221287-148-2-413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error