1887

Abstract

The proteins encoded by chromosomal homologues of the and genes of many bacterial plasmids have been implicated in chromosome partitioning. Unlike their plasmid counterparts, mutant phenotypes produced by deleting these genes have so far been elusive or weakly expressed, except during sporulation. Here the properties of strains with mutations in and are described. These mutants do not give rise to elevated levels of anucleate bacteria when grown in rich medium under standard conditions. However, in M9-minimal medium different and mutations gave between 5 and 10% anucleate cells during the transition from exponential phase to stationary phase. Comparison of the DNA content of bacteria at different stages of the growth curve, in batch culture in L-broth and in M9-minimal medium, suggests that the genes are particularly important for chromosome partitioning when cell division reduces the chromosome copy number per cell from two to one. This transition occurs in during the entry into stationary phase in M9-minimal medium, but not in L-broth. It is proposed that the partition apparatus is important to ensure proper chromosome segregation primarily when the bacteria are undergoing cell division in the absence of ongoing DNA replication.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-537
2002-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480537a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-537&mimeType=html&fmt=ahah

References

  1. Balzer D., Zieglin G., Pansegrau W., Kruft V., Lanka E. 1992; KorB protein of promiscuous plasmid RK2 recognises inverted repeat sequence repetitions in regions essential for conjugative transfer. Nucleic Acids Res 20:1851–1858 [CrossRef]
    [Google Scholar]
  2. Bignell C. R. 1999 Partition proteins of bacterial genomes PhD thesis University of Birmingham;
    [Google Scholar]
  3. Bignell C. R., Thomas C. M. 2001; The bacterial ParA–ParB partitioning proteins. J Biotechnol 91:1–34 [CrossRef]
    [Google Scholar]
  4. Bignell C. R., Haines A. H., Khare D., Thomas C. M. 1999; Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol Microbiol 34:205–216 [CrossRef]
    [Google Scholar]
  5. Bouet J.-Y., Funnell B. E. 1999; P1 ParA interacts with the P1 partition complex and an ATP/ADP switch controls ParA activities. EMBO J 18:1415–1424 [CrossRef]
    [Google Scholar]
  6. Brendler T., Sawitzke J., Sergueev K., Austin S. 2000; A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation. EMBO J 19:6248–6258
    [Google Scholar]
  7. Britton R. A., Lin D. C.-H., Grossman A. D. 1998; Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev 12:1254–1259 [CrossRef]
    [Google Scholar]
  8. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62:315–323
    [Google Scholar]
  9. Cervin M. A., Spiegelman G. B., Raether B., Ohlsen K., Perego M., Hoch J. A. 1998; A negative regulator linking chromosome segregation to developmental transcription in Bacillus subtilis . Mol Microbiol 29:85–95 [CrossRef]
    [Google Scholar]
  10. Davis M. A., Austin S. J. 1992; Biochemical activities of the ParA partition protein of the P1 plasmid. Mol Microbiol 6:1141–1147 [CrossRef]
    [Google Scholar]
  11. Davis M. A., Martin K. A., Austin S. J. 1988; Recognition of the P1 plasmid centromere analogue involves binding of the ParB protein and is modified by a specific host factor. EMBO J 7:1881–1888
    [Google Scholar]
  12. Dorman C. J. 1995; DNA topology and the global control of bacterial gene expression – implications for the regulation of virulence gene expression. Microbiology 141:1271–1280 [CrossRef]
    [Google Scholar]
  13. Drlica K. 1992; Control of bacterial DNA supercoiling. Mol Microbiol 6:425–433 [CrossRef]
    [Google Scholar]
  14. El-Sayed A. K. A. 2001 Molecular biological studies on the genes of Pseudomonas fluorescens NCIB10586 which encode biosynthesis of the polyketide antibiotic mupirocin PhD thesis University of Birmingham;
    [Google Scholar]
  15. Glaser P., Sharpe M., Raether B., Perego M., Ohlsen K., Errington J. 1997; Dynamic mitotic-like behaviour of a bacterial protein required for accurate chromosome partitioning. Genes Dev 11:1160–1168 [CrossRef]
    [Google Scholar]
  16. Hanahan D., Jessee J., Bloom F. R. 1991; Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113
    [Google Scholar]
  17. Hiraga S., Ichinose C., Niki H., Yamazoe M. 1998; Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA-protein complexes in E. coli . Mol Cell 1:381–387 [CrossRef]
    [Google Scholar]
  18. Hiraga S., Ichinose C., Onogi T., Niki H., Yamazoe M. 2000; Bidirectional migration of SeqA-bound hemimethylated DNA clusters and pairing of oriC copies in Escherichia coli . Genes Cells 5:327–341 [CrossRef]
    [Google Scholar]
  19. Ireton K., Gunther N. W., Grossman A. D. 1994; spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis . J Bacteriol 176:5320–5329
    [Google Scholar]
  20. Jagura-Burdzy G., Macartney D. P., Zatyka M., Cunliffe L., Cooke D., Huggins C., Westblade L., Khanim F., Thomas C. M. 1999; Repression at a distance by the global regulator KorB of promiscuous IncP plasmids. Mol Microbiol 32:519–532 [CrossRef]
    [Google Scholar]
  21. Jensen R. B., Gerdes K. 1997; Mechanism of DNA segregation in prokaryotes: Replicon pairing by parC of plasmid R1. Proc Natl Acad Sci U S A 95:8550–8555
    [Google Scholar]
  22. Jensen R. B., Gerdes K. 1999; Mechanism of DNA segregation in prokaryotes: ParM partitioning protein of plasmid R1 co-localizes with its replicon during the cell cycle. EMBO J 18:4076–4084 [CrossRef]
    [Google Scholar]
  23. Kim H.-J., Calcutt M. J., Schmidt F. J., Chater K. F. 2000; Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3 involves an oriC linked parAB locus. J Bacteriol 182:1313–1320 [CrossRef]
    [Google Scholar]
  24. Lemon K. P., Grossman A. D. 1998; Localisation of bacterial DNA polymerase: evidence for a factory model for DNA replication. Science 282:1516–1519 [CrossRef]
    [Google Scholar]
  25. Lemon K. P., Grossman A. D. 2000; Movement of replicating DNA through a stationary replisome. Mol Cell 6:1321–1330 [CrossRef]
    [Google Scholar]
  26. Lewis P. J. 2001; Bacterial chromosome segregation. Microbiology 147:519–526
    [Google Scholar]
  27. Lin D. C.-H., Grossman A. D. 1998; Identification and characterisation of a bacterial chromosome partitioning site. Cell 92:675–685 [CrossRef]
    [Google Scholar]
  28. Lin Z., Mallavia L. 1998; Membrane association of active plasmid partitioning protein A in Escherichia coli . J Biol Chem 273:11302–11312 [CrossRef]
    [Google Scholar]
  29. Lobocka M., Yarmolinsky M. 1996; P1 plasmid partition-mutational analysis of parB . J Mol Biol 259:366–382 [CrossRef]
    [Google Scholar]
  30. Marston A. L., Errington J. 1999; Dynamic movement of ParA-like Soj protein of B. subtilis and its dual in nucleoid organisation and development regulation. Mol Cell 4:673–682 [CrossRef]
    [Google Scholar]
  31. Mohl D. A., Gober J. W. 1997; Cell cycle-dependent polar localisation of chromosome partitioning proteins in Caulobacter crescentus . Cell 88:675–684
    [Google Scholar]
  32. Mori H., Mori Y., Ichinose C., Niki H., Ogura T., Kato A., Hiraga S. 1989; Purification and characterisation of SopA and SopB proteins essential for F plasmid partitioning. J Biol Chem 264:15535–15541
    [Google Scholar]
  33. Motallebi-Veshareh M., Rouch D., Thomas C. M. 1990; A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol Microbiol 4:1455–1463 [CrossRef]
    [Google Scholar]
  34. Norris V., Fishov I. 2001; Hypothesis: Membrane domains and hyperstructures control bacterial division. Biochimie 83:91–97 [CrossRef]
    [Google Scholar]
  35. Ogasawara N., Yoshikawa H. 1992; Genes and their organisation in the replication origin region of the bacterial chromosome. Mol Microbiol 6:629–634 [CrossRef]
    [Google Scholar]
  36. Quisel J. D., Lin D. C.-H., Grossman A. D. 1999; Control of development by altered location of a transcription factor in B. subtilis . Mol Cell 4:665–672 [CrossRef]
    [Google Scholar]
  37. Quisel J. D., Grossman A. D. 2000; Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB. J Bacteriol 182:3446–3451 [CrossRef]
    [Google Scholar]
  38. Rodionov O., Lockoba M., Yarmolinsky M. 1999; Silencing of genes flanking the P1 plasmid centromere. Science 283:546–549 [CrossRef]
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sawitzke J., Austin S. 2001; An analysis of the factory model for chromosome replication and segregation in bacteria. Mol Microbiol 40:786–794 [CrossRef]
    [Google Scholar]
  41. Schweizer H. P., Hoang T. T. 1995; An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa . Gene 158:15–22 [CrossRef]
    [Google Scholar]
  42. Sharpe M., Errington J. 1996; The Bacillus subtilis soj - spo0J locus is required for a centromere-like function involved in chromosome partitioning. Mol Microbiol 21:501–509 [CrossRef]
    [Google Scholar]
  43. Sharpe M., Errington J. 1998; A fixed distance for separation of newly replicated copies of oriC of Bacillus subtilis : implications for co-ordination of chromosome segregation and cell division. Mol Microbiol 28:981–990 [CrossRef]
    [Google Scholar]
  44. Surtees J. A., Funnell B. A. 1999; P1 ParB domain structure includes two independent multimerization domains. J Bacteriol 181:5898–5908
    [Google Scholar]
  45. Watanabe E., Inamoto S., Lee M. H., Kim S. U., Ogua T., Mori H., Hiraga S., Yamasaki M., Nagai K. 1989; Purification and characterization of the sopB gene product which is responsible for stable maintenance of mini-F plasmid. Mol Gen Genet 218:431–436 [CrossRef]
    [Google Scholar]
  46. Watanabe E., Wachi M., Tamaski M., Nagai K. 1992; ATPase activity of SopA, a protein essential for active partitioning of F plasmid. Mol Gen Genet 234:249–352
    [Google Scholar]
  47. Webb C. D., Graumann P. L., Kahana J. A., Teleman A. A., Silver P. A., Losick R. 1998; Use of time-lapse microscopy to visualise rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis . Mol Microbiol 28:883–892 [CrossRef]
    [Google Scholar]
  48. Whatling A. W. 1993 Molecular analysis of the genes involved in the biosynthesis of pseudomonic acid, a polyketide antibiotic produced by Pseudomonas fluorescens. NCIB10586 PhD thesis University of Birmingham;
    [Google Scholar]
  49. Williams D. R., Thomas C. M. 1992; Active partitioning of bacterial plasmids. J Gen Microbiol 138:1–16 [CrossRef]
    [Google Scholar]
  50. Williams D. R., Motallebi-Veshareh M., Thomas C. M. 1993; Multi-functional repressor KorB can block transcription by preventing isomerization of RNA polymerase–promoter complexes. Nucleic Acids Res 21:1141–1148 [CrossRef]
    [Google Scholar]
  51. Williams D. R., Macartney D. P., Thomas C. M. 1998; The partitioning activity of the RK2 central control region requires only incC , korB and KorB-binding site OB3 but other KorB-binding sites form destabilizing complexes in the absence of OB3. Microbiology 144:3369–3378 [CrossRef]
    [Google Scholar]
  52. Youngren B., Austin S. 1997; Altered ParA partition proteins of plasmid P1 act via the partition site to block plasmid propagation. Mol Microbiol 25:1023–1030 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-537
Loading
/content/journal/micro/10.1099/00221287-148-2-537
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error