1887

Abstract

The recombinant primer-dependent glucosyltransferase GtfJ of possesses a C-terminal glucan-binding domain composed of eighteen 21 aa YG repeats. By engineering a series of C-terminal truncated proteins, the position at which truncation prevented further mutan synthesis was defined to a region of 43 aa, confirming that not all of the YG motifs were required for the formation of mutan by GtfJ. The role of the YG repeats in glucan binding was investigated in detail. Three proteins consisting of 38, 72 or 110 C-terminal YG repeats were expressed in . Each of the three purified proteins bound to both the 1,6-α-linked glucose residues of dextran and the 1,3-α-linked glucose residues of mutan, indicating that a protein consisting of nothing but 38 YG repeats could attach to either substrate. Secondary structure predictions of the primary amino acid sequence suggested that 37% of the amino acids were capable of forming a structure such that five regions of β-sheet were separated by regions capable of forming β-turns and random coils. CD spectral analysis showed that the purified 38 YG protein possessed an unordered secondary structure with some evidence of possible β-sheet formation and that the protein maintained this relatively unordered structure on binding to dextran.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-549
2002-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480549a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-549&mimeType=html&fmt=ahah

References

  1. Abo H., Matsumura T., Kodama T., Ohta H., Fukui K., Kato K., Kagawa H. 1991; Peptide sequences for sucrose splitting and glucan binding within Streptococcus sobrinus glucosyltransferase (water-insoluble glucan synthetase. J Bacteriol 173:989–996
    [Google Scholar]
  2. Dotto G. P., Zinder N. D. 1984; Reduction of the minimal sequence for initiation of DNA synthesis by qualitative or quantitative changes of an initiator protein. Nature 311:279–280 [CrossRef]
    [Google Scholar]
  3. von Eichel-Streiber C., Sauerborn M., Kuramitsu H. K. 1992; Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases. J Bacteriol 174:6707–6710
    [Google Scholar]
  4. Fasman G. D. 1996 Circular Dichroism and the Conformational Analysis of Biomolecules New York: Plenum;
    [Google Scholar]
  5. Ferretti J. J., Gilpin M. L., Russell R. R. B. 1987; Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus Mfe28. J Bacteriol 169:4271–4278
    [Google Scholar]
  6. Giffard P. M., Jacques N. A. 1994; Definition of a fundamental repeating unit in streptococcal glucosyltransferase glucan-binding regions and related sequences. J Dent Res 73:1133–1141
    [Google Scholar]
  7. Giffard P. M., Simpson C. L., Milward C. P., Jacques N. A. 1991; Molecular characterization of a cluster of at least two glucosyltransferase genes in Streptococcus salivarius ATCC 25975. J Gen Microbiol 137:2577–2593 [CrossRef]
    [Google Scholar]
  8. Gough P. M., Murray N. L. 1983; Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol 166:1–19 [CrossRef]
    [Google Scholar]
  9. Haas W., Banas J. A. 2000; Ligand-binding properties of the carboxyl-terminal repeat domain of Streptococcus mutans glucan-binding protein A. J Bacteriol 182:728–733 [CrossRef]
    [Google Scholar]
  10. Haas W., MacColl R., Banas J. A. 1998; Circular dichroism analysis of the glucan binding domain of Streptococcus mutans glucan binding protein-A. Biochim Biophys Acta 1384112–120 [CrossRef]
    [Google Scholar]
  11. Hamada S., Slade H. D. 1980; Biology, immunology, and cariogenicity of Streptococcus mutans. Biol Rev 44:331–384
    [Google Scholar]
  12. Hare M. D., Svensson S., Walker G. J. 1978; Characterization of the extracellular, water-insoluble α-d-glucans of oral streptococci by methylation analysis, and by enzyme synthesis and degradation. Carbohydr Res 66:254–264
    [Google Scholar]
  13. Jacques N. A. 1983; Membrane perturbation by cerulenin modulates glucosyltransferase secretion and acetate uptake by Streptococcus salivarius . J Gen Microbiol 129:3293–3302
    [Google Scholar]
  14. Jacques N. A. 1994; The glucosyltransferases of Streptococcus salivarius . Aust Dent J 39:111–114 [CrossRef]
    [Google Scholar]
  15. Jacques N. A. 1995; Extracellular sucrose metabolism by Streptococcus salivarius . In Genetics of Streptococci, Enterococci and Lactococci Edited by Ferretti J. J., Gilmore M. S., Klaenhammer T. R., Brown F. Dev Biol Stand; 85315–322
    [Google Scholar]
  16. Kato C., Kuramitsu H. K. 1990; Carboxy-terminal deletion analysis of the Streptococcus mutans glucosyltransferase-I enzyme. FEMS Microbiol Lett 72:299–302 [CrossRef]
    [Google Scholar]
  17. Kobayashi S., Koga K., Hayashida O., Nakano Y., Hasegawa Y. 1989; Glucan-binding domain of a glucosyltransferase from Streptococcus sobrinus : isolation of a 55-kilodalton peptide trypsin digest of glucosyltransferase prebound to insoluble glucan. Infect Immun 57:2210–2213
    [Google Scholar]
  18. Konishi N., Torii Y., Yamamoto T. 8 other authors 1999; Structure and enzymatic properties of genetically truncated forms of the water-insoluble glucan-synthesizing glucosyltransferase from Streptococcus sobrinus . J Biochem 126:287–295 [CrossRef]
    [Google Scholar]
  19. Kunkel T. A., Roberts J. D., Zakour R. A. 1987; Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154:367–382
    [Google Scholar]
  20. Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A. 1990; Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulphate-polyacryamide gel electrophoresis. J Immunol Methods 126:109–117 [CrossRef]
    [Google Scholar]
  21. Lis M., Shiroza T., Kuramitsu H. K. 1995; Role of the C-terminal direct repeating units of the Streptococcus mutans glucosyltransferase- S in glucan binding. Appl Environ Microbiol 61:2040–2042
    [Google Scholar]
  22. Loesche W. L. 1986; Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380
    [Google Scholar]
  23. Manning M. C., Woody R. W. 1989; Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor. Biochemistry 28:8609–8613 [CrossRef]
    [Google Scholar]
  24. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Monchois V., Reverte A., Remaud-Simeon H., Monsan P., Willemot R. M. 1998; Effect of Leuconostoc mesenteroides NRRL B-512F dextransucrase carboxy-terminal deletions on dextran and oligosaccharide synthesis. Appl Environ Microbiol 64:1644–1649
    [Google Scholar]
  26. Monchois V., Arguello-Morales M., Russell R. R. B. 1999a; Isolation of an active catalytic core of Streptococcus downei Mfe28 GTF-I glucosyltransferase. J Bacteriol 181:2290–2292
    [Google Scholar]
  27. Monchois V., Willemot R.-M., Monsan P. 1999b; Glucansucrases: mechanism of action and structure–function relationships. FEMS Microbiol Rev 23:131–151
    [Google Scholar]
  28. Mooser G., Wong C. 1988; Isolation of glucan-binding domain of glucosyltransferase (1,6-α-glucan synthase) from Streptococcus sobrinus . Infect Immun 56:880–884
    [Google Scholar]
  29. Murray N. E., Brammar W. H., Murray K. 1977; Lambdoid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet 150:53–61 [CrossRef]
    [Google Scholar]
  30. Nakano Y. J., Kuramitsu H. K. 1992; Mechanism of Streptococcus mutans glucosyltransferases: hybrid-enzyme analysis. J Bacteriol 174:5639–5646
    [Google Scholar]
  31. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 85:2444–2448 [CrossRef]
    [Google Scholar]
  32. Quiocho F. A. 1986; Carbohydrate-binding proteins: tertiary structures and protein–sugar interactions. Annu Rev Biochem 55:287–315 [CrossRef]
    [Google Scholar]
  33. Russell R. R. B. 1978; Glycosyltransferases of Streptococcus mutans strain Ingbritt. Microbios 23:135–146
    [Google Scholar]
  34. Sanger F., Nicklen S., Coulsen A. R. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  35. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulphate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379 [CrossRef]
    [Google Scholar]
  36. Shiroza T., Ueda S., Kuramitsu H. K. 1987; Sequence analysis of the gtfB gene from Streptococcus mutans. J Bacteriol 169:4263–4270
    [Google Scholar]
  37. Simpson C. L., Cheetham N. W. H., Giffard P. M., Jacques N. A. 1995a; Four glucosyltransferases, GtfJ, GtfK, GtfL and GtfM, from Streptococcus salivarius ATCC 25975. Microbiology 141:1451–1460 [CrossRef]
    [Google Scholar]
  38. Simpson C. L., Giffard P. M., Jacques N. A. 1995b; Streptococcus salivarius ATCC 25975 possesses at least two genes coding for primer-independent glucosyltransferases. Infect Immun 63:609–621
    [Google Scholar]
  39. Song D. D., Jacques N. A. 1997; Cell disruption of Escherichia coli by glass bead stirring for the recovery of recombinant proteins. Anal Biochem 248:300–301 [CrossRef]
    [Google Scholar]
  40. Studier F. W., Moffat B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130 [CrossRef]
    [Google Scholar]
  41. Sun J. W., Wanda S. Y., Camilli A., Curtiss R. 1994; Cloning and DNA sequencing of the dextranase inhibitor gene ( dei ) from Streptococcus sobrinus . J Bacteriol 176:7213–7222
    [Google Scholar]
  42. Thain A., Gaston K., Jenkins O., Clarke A. R. 1996; A method for the separation of GST fusion proteins from co-purifying GroEL. Trends Genet 12:209–210 [CrossRef]
    [Google Scholar]
  43. Venyaminov S. Y., Vassilenko K. S. 1994; Determination of protein tertiary structure class from circular dichroism spectra. Anal Biochem 222:176–184 [CrossRef]
    [Google Scholar]
  44. Vickerman M. M., Sulavik M. C., Minick P. E., Clewell D. B. 1996; Changes in the carboxy-terminal repeat region affect extracellular activity and glucan products of Streptococcus gordonii glucosyltransferase. Infect Immun 64:5117–5128
    [Google Scholar]
  45. Walker G. J. 1978; Dextrans. Int Rev Biochem 16:75–126
    [Google Scholar]
  46. Woody R. W. 1974; Studies of theoretical circular dichroism of polypeptides: contributions of beta-turns. In Peptides, Polypeptides and Proteins pp 338–350 Edited by Blout E. R., Bovey F. A., Lotan N., Goodman M. New York: Wiley;
    [Google Scholar]
  47. Woody R. W. 1978; Aromatic side-chain contributions to the far ultraviolet circular dichroism of peptides and proteins. Biopolymers 17:1451–1467 [CrossRef]
    [Google Scholar]
  48. Wren B. W. 1991; A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences. Mol Microbiol 5:797–803 [CrossRef]
    [Google Scholar]
  49. Wren B. W., Russell R. R. B., Tabaqchali S. 1991; Antigenic cross-reactivity and functional inhibition by antibodies to Clostridium difficile toxin A, Streptococcus mutans glucan-binding protein, and a synthetic peptide. Infect Immun 59:3151–3155
    [Google Scholar]
  50. Yother J., Briles D. E. 1992; Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae , as revealed by sequence analysis. J Bacteriol 174:601–609
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-549
Loading
/content/journal/micro/10.1099/00221287-148-2-549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error