1887

Abstract

The YfiD protein of has been reported to be an acid-inducible protein. Here it is shown that expression of a :: reporter fusion is enhanced up to 35-fold during acidic growth. The anaerobic transcription factor FNR was confirmed as the major regulator of expression, and ArcA was found to enhance anaerobic expression, probably by displacing a repressing FNR dimer in the −935 region of the promoter. Moreover, the pyruvate sensor PdhR was shown to act as a minor anaerobic repressor of expression. On the basis of its strong homology to the C-terminal region of pyruvate formate-lyase (PFL) it was predicted that YfiD would be a radical-containing enzyme. The YfiD radical was found to be introduced by the PFL-activase enzyme, but unlike PFL, AdhE did not deactivate radicalized YfiD. The extent of radical activation of YfiD was enhanced by low intracellular pH, and thus it was concluded that both expression and YfiD activity are affected by growth at low pH. The mutant strain JRG4033 excreted increased levels of organic acids compared to the parental strain when grown in chemostat culture under oxygen-starved conditions, consistent with the acid-inducibility of expression and the recently reported ability of YfiD to rescue the activity of oxygenolytically cleaved PFL.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-1015
2002-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1481015a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-1015&mimeType=html&fmt=ahah

References

  1. Becker A., FritzWolf K., Kabsch W., Knappe J., Schultz S., Wagner A. F. V. 1999; Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Nat Struct Biol 6:969–975 [CrossRef]
    [Google Scholar]
  2. Bergmeyer H. U., Bernt E. 1968; Determination of d-glucose with glucose oxidase and peroxidase. In Methods in Enzymatic Analysis pp 1205–1215 Edited by Bergmeyer H. U. New York & London: Academic Press;
    [Google Scholar]
  3. Blankenhorn D., Phillips J., Slonczewski J. 1999; Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216
    [Google Scholar]
  4. Cotter P. A., Chepuri R. B., Gennis R. B., Gunsalus R. P. 1990; Cytochrome o ( cyoABCDE ) and d ( cydAB )oxidase gene expression in Escherichia coli is regulated by oxygen, pH and the fnr gene product. J Bacteriol 172:6333–6338
    [Google Scholar]
  5. Degraeve P., Delorme P., Lemay P. 1996; Pressure-induced inactivation of E. coli β-galactosidase: influence of pH and temperature. Biochim Biophys Acta 1292:61–68 [CrossRef]
    [Google Scholar]
  6. Freestone P., Grant S., Trinei M., Onoda T., Norris V. 1998; Protein phosphorylation in Escherichia coli L-form NC-7. Microbiology 144:3289–3295 [CrossRef]
    [Google Scholar]
  7. Green J., Baldwin M. L. 1997; HlyX, the FNR homologue of Actinobacillus pleuropneumoniae , is a [4Fe 4S]-containing oxygen-responsive transcription regulator that anaerobically activates FNR-dependent class I promoters via an enhanced AR1-contact. Mol Microbiol 24:593–605 [CrossRef]
    [Google Scholar]
  8. Green J., Marshall F. A. 1999; Identification of a surface of FNR overlapping AR1 that is required for repression of gene expression. J Biol Chem 274:10244–10248 [CrossRef]
    [Google Scholar]
  9. Green J., Baldwin M. L., Richardson J. 1998; Downregulation of Escherichia coli yfiD expression by FNR occupying a site at −93·5 involves the AR1-containing surface of FNR. Mol Microbiol 29:1113–1123 [CrossRef]
    [Google Scholar]
  10. Guan K., Dixon J. E. 1991; Eukaryotic proteins expressed in Escherichia coli : an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S -transferase. Anal Biochem 192:262–267 [CrossRef]
    [Google Scholar]
  11. Hamilton C. M., Aldea M., Washburn B. K., Babitzke P., Kushner S. R. 1989; New method for generating deletions and gene replacements in Escherichia coli . J Bacteriol 171:4617–4622
    [Google Scholar]
  12. Han M.-E., Yoon S. S., Lee S. Y. 2001; Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate). J Bacteriol 183:301–308 [CrossRef]
    [Google Scholar]
  13. Heßlinger C., Fairhurst S. A., Sawers G. 1998; Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades l-threonine to propionate. Mol Microbiol 27:477–492 [CrossRef]
    [Google Scholar]
  14. Hopper S., Babst M., Schlensog V., Fischer H. H., Hennecke H., Bock A. 1994; Regulated expression in vitro of genes coding for formate hydrogenlyase components of Escherichia coli . J Biol Chem 269:19597–19604
    [Google Scholar]
  15. Jordan P. A., Thomson A. J., Ralph E. T., Guest J. R., Green J. 1997; FNR is a direct oxygen sensor having a biphasic response curve. FEBS Lett 416:349–352 [CrossRef]
    [Google Scholar]
  16. Kessler D., Herth W., Knappe J. 1992; Ultrastructure and pyruvate formate-lyase radical quenching property of the multimeric AdhE protein of Escherichia coli . J Biol Chem 267:18073–18079
    [Google Scholar]
  17. Kiley P. J., Beinert H. 1999; Oxygen sensing by the global regulator FNR: the role of the iron-sulfur cluster. FEMS Microbiol Rev 22:341–352
    [Google Scholar]
  18. Lazzazera B. A., Beinert H., Khoroshilova N., Kennedy M. C., Kiley P. J. 1996; DNA-binding and dimerization of the Fe-S containing FNR protein Escherichia coli are regulated by oxygen. J Biol Chem 271:2762–2768 [CrossRef]
    [Google Scholar]
  19. Marshall F. A., Messenger S. L., Wyborn N. R., Guest J. R., Wing H. J., Busby S. J. W., Green J. 2001; A novel promoter architecture for microaerobic activation by the anaerobic transcription factor FNR. Mol Microbiol 39:747–753 [CrossRef]
    [Google Scholar]
  20. Meng S.-Y., Bennett G. N. 1992; Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 174:2659–2669
    [Google Scholar]
  21. Miller J. H. 1972; Assay of β-galactosidase. In Experiments in Molecular Genetics pp 352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Neely M. N., Dell C. L., Olson E. R. 1994; Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon. J Bacteriol 176:3278–3285
    [Google Scholar]
  23. Perrot F., Hebraud M., Charlionet R., Junter G. A., Jouenne T. 2000; Protein patterns of gel-entrapped Escherichia coli cells differ from those of free floating organisms. Electrophoresis 21:645–653 [CrossRef]
    [Google Scholar]
  24. Popescu C. V., Bates D. M., Beinert H., Munck E., Kiley P. J. 1998; Mössbauer spectroscopy as a tool for the study of activation/inactivation of the transcription regulator FNR in whole cells of Escherichia coli . Proc Natl Acad Sci USA 95:13431–13435 [CrossRef]
    [Google Scholar]
  25. Quail M. A., Guest J. R. 1995; Purification, characterization and mode of action of PdhR, the transcriptional repressor of the pdhR-aceEF-lpd operon of Escherichia coli . Mol Microbiol 15:519–529 [CrossRef]
    [Google Scholar]
  26. Rossmann R., Sawers G., Bock A. 1991; Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol 5:2807–2814 [CrossRef]
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Press;
    [Google Scholar]
  28. Sawers G. 1993; Specific transcriptional requirements for positive regulation of the anaerobically inducible pflB operon by ArcA and FNR. Mol Microbiol 10:737–747 [CrossRef]
    [Google Scholar]
  29. Sawers G., Bock A. 1988; Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12. J Bacteriol 170:5330–5336
    [Google Scholar]
  30. Sawers G., Watson G. 1998; A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol 29:945–954 [CrossRef]
    [Google Scholar]
  31. Selmer T., Andrei P. I. 2001; p -Hydroxyphenylacetate decarboxylase from Clostridium difficile . Eur J Biochem 268:1363–1372 [CrossRef]
    [Google Scholar]
  32. Slonczewski J. L., Foster J. W. 1996; pH-regulated genes and survival at extreme pH. In Escherichia coli and Salmonella: Cellular and Molecular Biology . pp 1539–1549 Edited by Niedhardt F. C. others Washington, DC: American Society for Microbiology;
  33. Vishniac W., Santer M. 1957; The Thiobacilli. Bacteriol Rev 21:195–209
    [Google Scholar]
  34. Wagner A. F. V., Frey M., Neugebauer F. A., Schafer W., Knappe J. 1992; The free radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci USA 89:996–1000 [CrossRef]
    [Google Scholar]
  35. Wagner A. F. V., Schultz S., Bomke J., Pils T., Lehmann W. D., Knappe J. 2001; YfiD of Escherichia coli and Y061 of bacteriophage T4 as autonomous glycyl radical cofactors reconstituting the catalytic center of oxygen-fragmented pyruvate formate-lyase. Biochem Biophys Res Commun 285:456–462 [CrossRef]
    [Google Scholar]
  36. Wing H. J., Williams S. M., Busby S. J. W. 1995; Spacing requirements for transcription activation by Escherichia coli . J Bacteriol 177:6704–6710
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-1015
Loading
/content/journal/micro/10.1099/00221287-148-4-1015
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error