1887

Abstract

A nonpigmented mutant of was constructed by using transposon mutagenesis. The mutant possessed the transposon DNA at the novel gene . Gene targeted mutagenesis revealed that was responsible for pigmentation. The gene shared similarities with genes of the family, the products of which are now considered to be transaminases involved in biosynthesis of sugar portions of cell-surface polysaccharides and aminoglycosides. The mutant showed a pleiotropic phenotype: delayed maturation of fimbrillin, preferential presence of Rgp and Kgp proteinases in culture supernatants, and no haemagglutination. The mutant had altered phenol extractable polysaccharide compared to the sibling strain. A mAb, 1B5, that reacts with sugar portions of cell surface polysaccharide and membrane-type Rgp proteinase showed no reaction with the cell lysates of the mutant. These results indicate that is involved in biosynthesis of cell surface polysaccharide that may function as an anchorage for Rgp, Kgp, haemagglutinins and the haemoglobin receptor protein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-1183
2002-04-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1481183a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-1183&mimeType=html&fmt=ahah

References

  1. Abaibou H., Chen Z., Olango G. J., Liu Y., Edwards J., Fletcher H. M. 2001; vimA gene downstream of recA is involved in virulence modulation in Porphyromonas gingivalis W83. Infect Immun 69:325–335 [CrossRef]
    [Google Scholar]
  2. Allen A., Maskell D. 1996; The identification, cloning and mutagenesis of a genetic locus required for lipopolysaccharide biosynthesis in Bordetella pertussis . Mol Microbiol 19:37–52 [CrossRef]
    [Google Scholar]
  3. Ames G. F., Spudich E. N., Nikaido H. 1974; Protein composition of the outer membrane of Salmonella typhimurium : effect of lipopolysaccharide mutations. J Bacteriol 117:406–416
    [Google Scholar]
  4. Booth V., Lehner T. 1997; Characterization of the Porphyromonas gingivalis antigen recognized by a monoclonal antibody which prevents colonization by the organism. J Periodontal Res 32:54–60 [CrossRef]
    [Google Scholar]
  5. Brochu V., Grenier D., Nakayama K., Mayrand D. 2001; Acquisition of iron from human transferrin by Porphyromonas gingivalis : a role for Arg- and Lys-gingipain activities. Oral Microbiol Immunol 16:79–87 [CrossRef]
    [Google Scholar]
  6. Chen T., Dong H., Yong R., Duncan M. J. 2000; Pleiotropic pigmentation mutants of Porphyromonas gingivalis . Microb Pathog 28:235–247 [CrossRef]
    [Google Scholar]
  7. Curtis M. A., Aduse-Opoku J., Slaney J. M., Rangarajan M., Booth V., Cridland J., Shepherd P. 1996; Characterization of an adherence and antigenic determinant of the ArgI protease of Porphyromonas gingivalis which is present on multiple gene products. Infect Immun 64:2532–2539
    [Google Scholar]
  8. Curtis M. A., Thickett A., Slaney J. M., Rangarajan M., Aduse-Opoku J., Shepherd P., Paramonov N., Hounsell E. F. 1999; Variable carbohydrate modifications to the catalytic chains of the RgpA and RgpB proteases of Porphyromonas gingivalis W50. Infect Immun 67:3816–3823
    [Google Scholar]
  9. Dhillon N., Hale R. S., Cortes J., Leadlay P. F. 1989; Molecular characterization of a gene from Saccharopolyspora erythraea ( Streptomyces erythraeus ) which is involved in erythromycin biosynthesis. Mol Microbiol 3:1405–1414 [CrossRef]
    [Google Scholar]
  10. Farquharson S. I., Germaine G. R., Gray G. R. 2000; Isolation and characterization of the cell-surface polysaccharides of Porphyromonas gingivalis ATCC 53978. Oral Microbiol Immunol 15:151–157 [CrossRef]
    [Google Scholar]
  11. Fry B. N., Korolik V., ten Brinke J. A., Pennings M. T. T., Zalm R., Teunis B. J. J., Coloe P. J., van der Zeijst B. A. M. 1998; The lipopolysaccharide biosynthesis locus of Campylobacter jejuni 81116. Microbiology 144:2049–2061 [CrossRef]
    [Google Scholar]
  12. Genco C. A., Schifferle R. E., Njoroge T., Forng R. Y., Cutler C. W. 1995a; Resistance of a Tn 4351 -generated polysaccharide mutant of Porphyromonas gingivalis to polymorphonuclear leukocyte killing. Infect Immun 63:393–401
    [Google Scholar]
  13. Genco C. A., Simpson W., Forng R. Y., Egal M., Odusnya B. M. 1995b; Characterization of a Tn 4351 -generated hemin uptake mutant of Porphyromonas gingivalis : evidence for the coordinate regulation of virulence factors by hemin. Infect Immun 63:2459–2466
    [Google Scholar]
  14. Gibbons R. J., MacDonald J. B. 1960; Hemin and vitamin K compounds as required factors for the cultivation of certain strains of Bacteroides melaninogenicus . J Bacteriol 80:164–170
    [Google Scholar]
  15. Glaser P., Kunst F., Arnaud M. 14 other authors 1993; Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325 degrees to 333 degrees. Mol Microbiol 10:371–384 [CrossRef]
    [Google Scholar]
  16. Haffajee A. D., Socransky S. S. 1994; Microbial etiological agents of destructive periodontal diseases. Periodontol 2000; 5:78–111 [CrossRef]
    [Google Scholar]
  17. Han N., Whitlock J., Progulske-Fox A. 1996; The hemagglutinin gene A ( hagA ) of Porphyromonas gingivalis 381 contains four large, contiguous, direct repeats. Infect Immun 64:4000–4007
    [Google Scholar]
  18. Hoover C. I., Yoshimura F. 1994; Transposon-induced pigment-deficient mutants of Porphyromonas gingivalis . FEMS Microbiol Lett 124:43–48 [CrossRef]
    [Google Scholar]
  19. Kadowaki T., Nakayama K., Yoshimura F., Okamoto K., Abe N., Yamamoto K. 1998; Arg-gingipain acts as a major processing enzyme for various cell surface proteins in Porphyromonas gingivalis . J Biol Chem 273:29072–29076 [CrossRef]
    [Google Scholar]
  20. Kelly C. G., Booth V., Kendal H., Slaney J. M., Curtis M. A., Lehner T. 1997; The relationship between colonization and haemagglutination inhibiting and B cell epitopes of Porphyromonas gingivalis . Clin Exp Immunol 110:285–291
    [Google Scholar]
  21. Koplow J., Goldfine H. 1974; Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli . J Bacteriol 117:527–543
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  23. Liu H., Thorson J. S. 1994; Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu Rev Microbiol 48:223–256 [CrossRef]
    [Google Scholar]
  24. Matsuo T., Matsumoto S., Ohara N., Kitaura H., Mizuno A., Yamada T. 1995; Differential transcription of the MPB70 genes in two major groups of Mycobacterium bovis BCG substrains. Microbiology 141:1601–1607 [CrossRef]
    [Google Scholar]
  25. McKee A. S., McDermid A. S., Wait R., Baskerville A., Marsh P. D. 1988; Isolation of colonial variants of Bacteroides gingivalis W50 with a reduced virulence. J Med Microbiol 27:59–64 [CrossRef]
    [Google Scholar]
  26. Nakayama K. 1994; Rapid viability loss on exposure to air in a superoxide dismutase-deficient mutant of Porphyromonas gingivalis . J Bacteriol 176:1939–1943
    [Google Scholar]
  27. Nakayama K. 1997; Domain-specific rearrangement between the two Arg-gingipain-encoding genes in Porphyromonas gingivalis : possible involvement of nonreciprocal recombination. Microbiol Immunol 41:185–196 [CrossRef]
    [Google Scholar]
  28. Nakayama K., Kadowaki T., Okamoto K., Yamamoto K. 1995; Construction and characterization of arginine-specific cysteine proteinase (Arg-gingipain)-deficient mutants of Porphyromonas gingivalis : evidence for significant contribution of Arg-gingipain to virulence. J Biol Chem 270:23619–23626 [CrossRef]
    [Google Scholar]
  29. Nakayama K., Yoshimura F., Kadowaki T., Yamamoto K. 1996; Involvement of arginine-specific cysteine proteinase (Arg-gingipain) in fimbriation of Porphyromonas gingivalis . J Bacteriol 178:2818–2824
    [Google Scholar]
  30. Nakayama K., Ratnayake D. B., Tsukuba T., Kadowaki T., Yamamoto K., Fujimura S. 1998; Hemoglobin receptor protein is intragenically encoded by the cysteine proteinase-encoding genes and the haemagglutinin-encoding gene of Porphyromonas gingivalis . Mol Microbiol 27:51–61 [CrossRef]
    [Google Scholar]
  31. Okamoto K., Kadowaki T., Nakayama K., Yamamoto K. 1996; Cloning and sequencing of the gene encoding a novel lysine-specific cysteine proteinase (Lys-gingipain) in Porphyromonas gingivalis : structural relationship with the arginine-specific cysteine proteinase (Arg-gingipain). J Biochem 120:398–406 [CrossRef]
    [Google Scholar]
  32. Okamoto K., Nakayama K., Kadowaki T., Abe N., Ratnayake D. B., Yamamoto K. 1998; Involvement of a lysine-specific cysteine proteinase in hemoglobin adsorption and heme accumulation by Porphyromonas gingivalis . J Biol Chem 273:21225–21231 [CrossRef]
    [Google Scholar]
  33. Pavloff N., Potempa J., Pike R. N., Prochazka V., Kiefer M. C., Travis J., Barr P. J. 1995; Molecular cloning and structural characterization of the Arg-gingipain proteinase of Porphyromonas gingivalis : biosynthesis as a proteinase-adhesin polyprotein. J Biol Chem 270:1007–1010 [CrossRef]
    [Google Scholar]
  34. Potempa J., Pike R., Travis J. 1995; The multiple forms of trypsin-like activity present in various strains of Porphyromonas gingivalis are due to the presence of either Arg-gingipain or Lys-gingipain. Infect Immun 63:1176–1182
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sandlin R. C., Lampel K. A., Keasler S. P., Goldberg M. B., Stolzer A. L., Maurelli A. T. 1995; Avirulence of rough mutants of Shigella flexneri : requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect Immun 63:229–237
    [Google Scholar]
  37. Shah H. N., Bonnett R., Mateen B., Williams R. A. D. 1979; The porphyrin pigmentation of subspecies of Bacteroides melaninogenicus . Biochem J 180:45–50
    [Google Scholar]
  38. Shah H. N., Seddon S. V., Gharbia S. E. 1989; Studies on the virulence properties and metabolism of pleiotropic mutants of Porphyromonas gingivalis ( Bacteroides gingivalis ) W50. Oral Microbiol Immunol 4:19–23 [CrossRef]
    [Google Scholar]
  39. Shi Y., Ratnayake D. B., Okamoto K., Abe N., Yamamoto K., Nakayama K. 1999; Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis: construction of mutants with a combination of rgpA, rgpB, kgp , and hagA . J Biol Chem 274:17955–17960 [CrossRef]
    [Google Scholar]
  40. Shi Y., Kong W., Nakayama K. 2000; Human lactoferrin binds and removes the haemoglobin receptor protein of the periodontopathogen Porphyromonas gingivalis . J Biol Chem 275:30002–30008 [CrossRef]
    [Google Scholar]
  41. Shibata Y., Hayakawa M., Takiguchi H., Shiroza T., Abiko Y. 1999; Determination and characterization of the hemagglutinin-associated short motifs found in Porphyromonas gingivalis multiple gene products. J Biol Chem 274:5012–5020 [CrossRef]
    [Google Scholar]
  42. Shoemaker N. B., Getty C., Gardner J. F., Salyers A. A. 1986; Tn 4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome. J Bacteriol 165:929–936
    [Google Scholar]
  43. Simpson W., Wang C. Y., Mikolajczyk-Pawlinska J., Potempa J., Travis J., Bond V. C., Genco C. A. 1999; Transposition of the endogenous insertion sequence element IS 1126 modulates gingipain expression in Porphyromonas gingivalis . Infect Immun 67:5012–5020
    [Google Scholar]
  44. Smalley J. W., Silver J., Marsh P. D., Birss A. J. 1998; The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the μ-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism. Biochem J 331:681–685
    [Google Scholar]
  45. Takagi M., Takada H., Imanaka T. 1990; Nucleotide sequence and cloning in Bacillus subtilis of the Bacillus stearothermophilus pleiotropic regulatory gene degT . J Bacteriol 172:411–418
    [Google Scholar]
  46. Thorson J. S., Lo S. F., Liu H. 1993; Biosynthesis of 3,6-dideoxyhexose: new mechanistic reflections upon 2,6-dideoxy, 4,6-dideoxy, and amino sugar construction. J Am Chem Soc 115:6993–6994 [CrossRef]
    [Google Scholar]
  47. Tsai C., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119 [CrossRef]
    [Google Scholar]
  48. Westphal O., Jann K. 1965; Bacterial lipopolysaccharides: extraction with phenol-water and further applications of the procedure. Methods Carbohydr Chem 5:83–91
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-1183
Loading
/content/journal/micro/10.1099/00221287-148-4-1183
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error