1887

Abstract

Studies of the interactions between hyperparasitic fungi and their hosts are severely hampered by the absence of methods that allow the unambiguous identification of individual genera in complex environments that contain mixed populations of fungi, such as soil or compost. This study details the development of a monoclonal antibody (MF2) that allows the detection and recovery of spp. in naturally infested composts, and the visualization of hyperparasitic strains of during antagonistic interactions with their hosts. Murine monoclonal antibody MF2, of immunoglobulin class M (IgM), was raised against a protein epitope of a glycoprotein antigen(s) specific for species of the genus and for the closely related fungi , , spp. and spp. MF2 did not react with antigens from , , and spp., nor with a range of unrelated soil- and compost-borne fungi. Extracellular production of the MF2 antigen was constitutive. Western-blotting analysis showed that MF2 bound to a ladder of proteins with apparent molecular masses in the range 35–200 kDa. Immunofluorescence studies showed that MF2 bound strongly to the cell walls of hyphae and phialides and the intercalary and terminal chlamydospores of spp., whereas immunogold electron microscopy revealed strong binding of MF2 to the cell walls and septa of hyphae and to the cell walls of phialoconidia. In immunofluorescence studies of dual cultures of and , only the cell walls of the hyperparasite, which coiled around the host, were stained by MF2. The specificity of MF2 enabled the development of a combined baiting–ELISA technique for the detection of spp. in naturally infested composts. The specificity of this technique was confirmed by phylogenetic analysis based on sequences of the ITS1–58S–ITS2 rRNA-encoding regions of the isolates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1263
2002-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481263a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1263&mimeType=html&fmt=ahah

References

  1. Abbasi P. A., Miller S. A., Meulia T., Hoitink H. A. J., Kim J.-H. 1999; Precise detection and tracing of Trichoderma hamatum 382 in compost-amended potting mixes by using molecular markers. Appl Environ Microbiol 65:5421–5426
    [Google Scholar]
  2. Ahmad J. S., Baker R. 1988; Rhizosphere competence of benomyl tolerant mutants of Trichoderma spp. Can J Microbiol 34:694–696 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Bae Y. S., Knudsen G. R. 2000; Co-transformation of Trichoderma harzianum with beta-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Appl Environ Microbiol 66:810–815 [CrossRef]
    [Google Scholar]
  5. Benhamou N., Chet I. 1993; Hyphal interactions between Trichoderma harzianum and Rhizoctonia solani : ultrastructure and gold cytochemistry of the mycoparasitic process. Phytopathology 83:1062–1071 [CrossRef]
    [Google Scholar]
  6. Bull A. T., Chesters C. G. C. 1966; The biochemistry of laminarin and the nature of laminarinase. Adv Enzymol Relat Areas Mol Biol 28:325–364
    [Google Scholar]
  7. Carlsson S. R. 1993; Isolation and characterisation of glycoproteins. In Glycobiology, a Practical Approach pp 1–26 Edited by Fakuda M. Kobata A. Oxford, UK: IRL Press;
    [Google Scholar]
  8. Chet I., Harman G. E., Baker R. 1981; Trichoderma hamatum : its hyphal interactions with Rhizoctonia solani and Pythium spp. Microb Ecol 7:29–38 [CrossRef]
    [Google Scholar]
  9. Claydon N., Allan M., Hanson J. R., Avent A. G. 1987; Antifungal alkyl pyrones of Trichoderma harzianum . Trans Br Mycol Soc 88:503–513 [CrossRef]
    [Google Scholar]
  10. Cole L., Dewey F. M., Hawes C. R. 1998; Immunocytochemical studies of the infection mechanisms of Botrytis fabae . I. The fungal extracellular matrix in penetration and post-penetration processes. New Phytol 139:597–609 [CrossRef]
    [Google Scholar]
  11. Cullen D., Kersten P. 1992; Fungal enzymes for lignocellulose degradation. In Applied Molecular Genetics of Filamentous Fungi pp 100–131 Edited by Kinghorn J. R. Turner G. Glasgow, UK: Blackie Academic & Professional;
    [Google Scholar]
  12. De La Cruz J., Rey M., Lora J. M., Hidalgo-Gallego A., Dominguez F., Pintor-Toro J. A., Llobell A., Benitez T. 1993; Carbon source control of β-glucanases, chitobiase and chitinase from Trichoderma harzianum . Arch Microbiol 159:316–322 [CrossRef]
    [Google Scholar]
  13. De La Cruz J., Pintor-Toro J. A., Benitez T., Llobell A., Romero L. C. 1995; A novel endo-β-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum. J Bacteriol 177:6937–6945
    [Google Scholar]
  14. Dewey F. M. 1992; Detection of plant invading fungi by monoclonal antibodies. In Techniques for the Rapid Detection of Plant Pathogens . pp 42–47 Edited by Duncan J. M. Torrance L. Oxford, UK: Blackwell Scientific Publications;
  15. Dewey F. M., Thornton C. R. 1995; Fungal immunodiagnostics in plant agriculture. In New Diagnostics in Crop Sciences pp 151–171 Biotechnology in Agriculture no. 13 Edited by Skerrit J. H. Appels R. Oxford, UK: CABI;
    [Google Scholar]
  16. Dewey F. M., Thornton C. R., Gilligan C. A. 1996; Use of monoclonal antibodies to detect, quantify and visualize fungi in soil. In Advances in Botanical Research Incorporating Advances in Plant Pathology 24 pp 275–308 Edited by Andrews J. H. Tommerup I. C. San Diego: Academic Press;
    [Google Scholar]
  17. Dickinson C. H., Dooley M. 1969; Fungi associated with Irish peat bogs. Proc R Ir Acad Sect B Biol Geol Chem Sci 68:109–137
    [Google Scholar]
  18. Domsch K. H., Gams W., Anderson T. H. 1980 Compendium of Soil Fungi, vol. 1 London: Academic Press;
    [Google Scholar]
  19. Elad Y., Chet I., Henis Y. 1982; Degradation of plant pathogenic fungi by Trichoderma harzianum . Can J Microbiol 28:719–725 [CrossRef]
    [Google Scholar]
  20. Elad Y., Chet I., Boyle P., Henis Y. 1983; Parasitism of Trichoderma sp. on Rhizoctonia solani and Sclerotium rolfsii – scanning electron microscopy and fluorescence microscopy. Phytopathology 73:85–88 [CrossRef]
    [Google Scholar]
  21. Fagerstrom R. 1994; Purification and specificity of recombinant Hormoconis resinae glucoamylase P and endogenous glucoamylase from Trichoderma reesei . Enzyme Microb Technol 16:36–42 [CrossRef]
    [Google Scholar]
  22. Fagerstrom R., Kalkkinen N. 1995; Characterization, subsite mapping and partial amino acid sequence of glucoamylase from the filamentous fungus Trichoderma reesei. Biotechnol Appl Biochem. 21223–231 [CrossRef]
  23. Ghisalberti E. L., Sivasithamparam K. 1991; Antifungal antibiotics produced by Trichoderma spp. Soil Biol Biochem 23:1011–1020 [CrossRef]
    [Google Scholar]
  24. Gohl M., Srinivas R., Dammertz W., Udupa M. R., Panda T. 1998; Localization of β-1,3-glucanases in Trichoderma harzianum . Bioprocess Eng 19:237–241
    [Google Scholar]
  25. Gordon C. L., Khalaj V., Ram A. F. J. 9 other authors 2000; Glucoamylase:: green fluorescent protein fusions to monitor protein secretion in Aspergillus niger. Microbiology 146:415–426
    [Google Scholar]
  26. Green H., Jensen D. F. 1995; A tool for monitoring Trichoderma harzianum . 2. The use of a GUS transformant for ecological studies in the rhizosphere. Phytopathology 85:1436–1440 [CrossRef]
    [Google Scholar]
  27. Hermosa M. R., Grondona I., Diaz-Minguez J. M., Iturriaga E. A., Monte E. 2001; Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soil-borne fungal plant pathogens. Curr Genet 38:343–350 [CrossRef]
    [Google Scholar]
  28. Jacobs F., Byl B., Burgeous N. 7 other authors 1992; Trichoderma viride infection in a liver transplant recipient. Mycoses 35:301–303
    [Google Scholar]
  29. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  30. Loeppke C. B., Ronald M. D., Sprouse R. F., Carlson J. V., Everett E. D. 1983; Trichoderma viride peritonitis. South Med J 76:798–799 [CrossRef]
    [Google Scholar]
  31. Maplestone P. A., Whipps J. M., Lynch J. M. 1991; Effect of peat-bran inoculum of Trichoderma species on biological control of Rhizoctonia solani in lettuce. Plant Soil 136:257–263 [CrossRef]
    [Google Scholar]
  32. Marck C. 1989; DNA Strider 1.1. Service de Biochemie, Department de Biologie, Institute de Reserche Fondimentale. CEA, France:
  33. Noronha E. F., Ulhoa C. J. 1996; Purification and characterization of an endo-β-1,3-glucanase from Trichoderma harzianum . Can J Microbiol 42:1039–1044 [CrossRef]
    [Google Scholar]
  34. Okada G. 1977; Glucoamylase from Trichoderma viride . J Jpn Soc Starch Sci 24:120–127 [CrossRef]
    [Google Scholar]
  35. Otten W., Gilligan C. A., Thornton C. R. 1997; Quantification of fungal antigens in soil with a monoclonal antibody-based ELISA: analysis and reduction of soil-specific bias. Phytopathology 87:730–736 [CrossRef]
    [Google Scholar]
  36. Papavizas G. C. 1982; Survival of Trichoderma harzianum in soil and in pea and bean rhizospheres. Phytopathology 72:121–125 [CrossRef]
    [Google Scholar]
  37. Papavizas G. C. 1985; Trichoderma and Gliocladium : biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23:23–54 [CrossRef]
    [Google Scholar]
  38. Pe’er S., Barak Z., Yarden O., Chet I. 1991; Stability of Trichoderma harzianum amd S transformants in soil and rhizosphere. Soil Biol Biochem 23:1043–1046 [CrossRef]
    [Google Scholar]
  39. Ramot O., Cohen-Kupiec R., Chet I. 2000; Regulation of β-1,3-glucanase by carbon starvation in the mycoparasite Trichoderma harzianum . Mycol Res 104:415–420 [CrossRef]
    [Google Scholar]
  40. Reese E. T., Mandels M. 1959; β-1,3-Glucanase in fungi. Can J Microbiol 5:173–185 [CrossRef]
    [Google Scholar]
  41. Rehner S. A., Samuels G. J. 1994; Taxonomy and phylogeny of Gliocladium analysed from nuclear subunit ribosomal DNA sequences. Mycol Res 98:625–634 [CrossRef]
    [Google Scholar]
  42. Richter S., Cormican M. G., Pfaller M. A., Lee C. K., Gingrich R., Rinaldi M. G., Sutton D. A. 1999; Fatal disseminated Trichoderma longibrachiatum infection in an adult bone marrow transplant patient: species identification and review of the literature. J Clin Microbiol 37:1154–1160
    [Google Scholar]
  43. Sandhu D. K., Kalra M. K. 1982; Production of cellulase, xylanase and pectinase by Trichoderma longibrachiatum on different substrates. Trans Br Mycol Soc 79:409–413 [CrossRef]
    [Google Scholar]
  44. Seaby D. A. 1987; Infection of mushroom compost by Trichoderma species. Mushroom J 179:355–361
    [Google Scholar]
  45. Sivan A., Chet I. 1989; Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum . J Gen Microbiol 135:675–682
    [Google Scholar]
  46. Sreenivasiprasad S., Sharada K., Brown A. E., Mills P. R. 1996; PCR-based detection of Colletotrichum acutatum on strawberry. Plant Pathol 45:650–655 [CrossRef]
    [Google Scholar]
  47. Swofford D. L. 2000; paup*, phylogenetic analysis using parsimony (*and other methods). , Version 4.0b4a. Sunderland, MA: Sinauer;
  48. Tanis B. C., Van den Pijl H., Van Ostrup M. L., Kibbehaar R. E., Chang P. C. 1995; Fatal fungal peritonitis by Trichoderma longibrachiatum complicating peritoneal dialysis. Nephrol Dial Transplant 10:114–116 [CrossRef]
    [Google Scholar]
  49. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix change. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  50. Thornton C. R., Gilligan C. A. 1999; Quantification of the effect of the hyperparasite Trichoderma harzianum on the saprotrophic growth dynamics of Rhizoctonia solani in compost using a monoclonal antibody-based ELISA. Mycol Res 103:443–448 [CrossRef]
    [Google Scholar]
  51. Thornton C. R., Dewey F. M., Gilligan C. A. 1993; Development of monoclonal antibody-based immunological assays for the detection of live propagules of Rhizoctonia solani in the soil. Plant Pathol 42:763–773 [CrossRef]
    [Google Scholar]
  52. Thornton C. R., Dewey F. M., Gilligan C. A. 1997; Production and characterization of a monoclonal antibody raised against surface antigens from mycelium of Gaeumannomyces graminis var. tritici : evidence for an extracellular polyphenol oxidase. Phytopathology 87:123–131 [CrossRef]
    [Google Scholar]
  53. Thornton C. R., O’Neill T. M., Hilton G., Gilligan C. A. 1999; Detection and recovery of Rhizoctonia solani in naturally infested glasshouse soils using a combined baiting, double monoclonal antibody ELISA. Plant Pathol 48:627–634 [CrossRef]
    [Google Scholar]
  54. Thrane C., Lubeck M., Green H., Degefu Y., Allerup S., Thrane U., Jensen D. F. 1995; A tool for monitoring Trichoderma harzianum . 1. Transformation with the GUS gene by protoplast technology. Phytopathology 85:1428–1435 [CrossRef]
    [Google Scholar]
  55. Vasquez-Garciduenas S., Leal C. A., Herrera-Estrella A. 1998; Analysis of the beta-1,3-glucanolytic system of the biocontrol agent Trichoderma harzianum . Appl Environ Microbiol 64:1442–1446
    [Google Scholar]
  56. Whipps J. M. 1997; Developments in the biological control of soil-borne plant pathogens. Adv Bot Res 26:1–134
    [Google Scholar]
  57. White T. J., Bruns T., Lee S., Taylor J. 1990; Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications pp 315–322 Edited by Innis M. A. Gelfand D. H., Sninsky J. J., White T. J. San Diego, USA: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1263
Loading
/content/journal/micro/10.1099/00221287-148-5-1263
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error