1887

Abstract

The gene encoding trehalose-6-phosphate (T6P) phosphatase from has been cloned and disrupted in this organism. The / mutant did not accumulate trehalose but accumulated high levels of T6P. Disruption of the two copies of the gene did not abolish growth even at 42 °C, but decreased the growth rate. In the stationary phase, the / mutant aggregated, more than 50% of its cells became permeable to propidium iodide and a large amount of protein was found in the culture medium. Aggregation occurred only at pH values higher than 7 and was avoided by osmoprotectants; it was never observed during the exponential phase of growth. The mutant formed colonies with a smooth border on Spider medium. Mice inoculated with 15×10 c.f.u. of wild-type cells died after 8 days, while 80% of those inoculated with the same number of c.f.u. of the / mutant survived for at least 1 month. Reintroduction of the wild-type gene in the mutant abolished the phenotypes described. It is hypothesized that the accumulation of T6P interferes with the assembly of a normal cell wall.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1281
2002-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481281a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1281&mimeType=html&fmt=ahah

References

  1. Alex L. A., Korch C., Selitrennikoff C. P., Simon M. I. 1998; COS1 , a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans . Proc Natl Acad Sci USA 95:7069–7073 [CrossRef]
    [Google Scholar]
  2. Blázquez M. A., Lagunas R., Gancedo C., Gancedo J. M. 1993; Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett 329:51–54 [CrossRef]
    [Google Scholar]
  3. Blázquez M. A., Stucka R., Feldmann H., Gancedo C. 1994a; Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe . J Bacteriol 176:3895–3902
    [Google Scholar]
  4. Blázquez M. A., Gancedo J. M., Gancedo C. 1994b; Use of Yarrowia lipolytica hexokinase for the quantitative determination of trehalose-6-phosphate. FEMS Microbiol Lett 121:223–227 [CrossRef]
    [Google Scholar]
  5. Borgia P. T., Miao Y., Dodge C. L. 1996; The orlA gene from Aspergillus nidulans encodes a trehalose-6-phosphate phosphatase necessary for normal growth and chitin synthesis at elevated temperatures. Mol Microbiol 20:1287–1296 [CrossRef]
    [Google Scholar]
  6. Bulawa C. E., Miller D. W., Henry L. K., Becker J. M. 1995; Attenuated virulence of chitin-deficient mutants of Candida albicans . Proc Natl Acad Sci USA 92:10570–10574 [CrossRef]
    [Google Scholar]
  7. Cabib E., Leloir F. L. 1958; The biosynthesis of trehalose-6-phosphate. J Biol Chem 231:259–275
    [Google Scholar]
  8. Calera J. A., Calderone R. 1999; Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans . Microbiology 145:1431–1442 [CrossRef]
    [Google Scholar]
  9. de Pauw B. E., Meunier F. 1999; The challenge of invasive fungal infections. Chemotherapy 45:1–14
    [Google Scholar]
  10. De Virgilio C., Bürckert N., Bell W., Jeno P., Boller T., Wiemken A. 1993; Disruption of TPS2 , the gene encoding the 100-kDa subunit of trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae , causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212:315–323 [CrossRef]
    [Google Scholar]
  11. Edwards J. E. 1991; Invasive Candida infections. Evolution of a fungal pathogen. N Engl J Med 324:1060–1062 [CrossRef]
    [Google Scholar]
  12. El Barkani A., Kurzai O., Fonzi W. A., Ramon A., Porta A., Frosch M., Muhlschlegel F. A. 2000; Dominant active alleles of RIM101(PPR2) bypass the pH restriction of filamentation of Candida albicans . Mol Cell Biol 20:4635–4647 [CrossRef]
    [Google Scholar]
  13. Elliott B., Haltiwanger R. S., Futcher B. 1996; Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae . Genetics 144:923–933
    [Google Scholar]
  14. Fonzi W. A. 1999; PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans. J Bacteriol 181:7070–7079
    [Google Scholar]
  15. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  16. Franco A., Soto T., Vicente-Soler J., Valero Guillen P., Cansado J., Gacto M. 2000; Characterization of tpp1 + as encoding a main trehalose-6-P phosphatase in the fission yeast Schizosaccharomyces pombe . J Bacteriol 182:5880–5884 [CrossRef]
    [Google Scholar]
  17. François J. M., Blázquez M. A., Ariño J., Gancedo C. 1997; Storage carbohydrates in the yeast Saccharomyces cerevisiae . In Yeast Sugar Metabolism . pp 285–312 Edited by Zimmermann F. K. Entian K. D. Lancaster, Basel: Technomic Publishing;
  18. Gietz D., St Jean A., Woods R. A., Schiestl R. H. 1992; Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425 [CrossRef]
    [Google Scholar]
  19. Gietz R. D., Sugino A. 1988; New yeast– Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534 [CrossRef]
    [Google Scholar]
  20. Gillum A. M., Tsay E. Y., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182 [CrossRef]
    [Google Scholar]
  21. Gounalaki N., Thireos G. 1994; Yap1, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. EMBO J 13:4036–4041
    [Google Scholar]
  22. Gow N., Robbins P. W., Lester J. W., Brown A. J., Fonzi W. A., Chapman T., Kinsman O. S. 1994; A hyphal-specific chitin synthase gene ( CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans . Proc Natl Acad Sci USA 91:6216–6220 [CrossRef]
    [Google Scholar]
  23. Herbrecht R., Letscher V., Andres E., Cavalier A. 1999; Safety and efficacy of amphotericin B colloidal dispersion. A review. Chemotherapy 45 :suppl. 167–76
    [Google Scholar]
  24. Herrero A. B., López M. C., Fernández-Lago L., Domı́nguez A. C. 1999; Candida albicans and Yarrowia lipolytica as alternative models for analysing budding patterns and germ tube formation in dimorphic fungi. Microbiology 145:2727–2737
    [Google Scholar]
  25. Hill J. E., Myers A. M., Koerner T. J., Tzagoloff A. 1986; Yeast/ E. coli shuttle vectors with multiple unique restrictions sites. Yeast 2:163–167 [CrossRef]
    [Google Scholar]
  26. Hoffman C. S., Winston F. 1987; A ten-minutes DNA preparation from yeast efficiently releases autonomous plasmids for transformation of E. coli. Gene 57:266–272
    [Google Scholar]
  27. Hoyer L. L., Scherer S., Shatzman A. R., Livi G. P. 1995; Candida albicans ALS1 : domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol 15:39–54 [CrossRef]
    [Google Scholar]
  28. Kapitany R. A., Zebrowsky E. J. 1973; A high resolution PAS staining for polyacrylamide gel electrophoresis. Anal Biochem 56:361–369 [CrossRef]
    [Google Scholar]
  29. Kapteyn J. C., Hoyer L. L., Hecht J. E., Muller W. H., Andel A., Verkleij A. J., Makarow M., Van Den Ende H., Klis F. M. 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35:601–611
    [Google Scholar]
  30. Kapteyn J. C., ter Riet B., Vink E., Blad S., De Nobel H., Van Den Ende H., Klis F. M. 2001; Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39:469–479 [CrossRef]
    [Google Scholar]
  31. Kobayashi N., McEntee K. 1993; Identification of cis and trans components of a novel heat-shock stress regulatory pathway in Saccharomyces cerevisiae . Mol Cell Biol 13:248–256
    [Google Scholar]
  32. Kohler G. A., White T. C., Agabian N. 1997; Overexpression of a cloned IMP dehydrogenase gene from Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179:2331–2338
    [Google Scholar]
  33. Kurtz M. B., Cortelyou M. W., Kirsch D. R. 1986; Integrative transformation of Candida albicans using a cloned ADE2 gene. Mol Cell Biol 6:142–149
    [Google Scholar]
  34. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  35. Liu H., Köhler J., Fink G. R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1725 [CrossRef]
    [Google Scholar]
  36. Marchler G., Schüller C., Adam G., Ruis H. 1993; A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003
    [Google Scholar]
  37. Martin M. V. 1999; The use of fluoconazole and itraconazole in the treatment of Candida albicans infections: a review. J Antimicrob Chemother 44:429–437 [CrossRef]
    [Google Scholar]
  38. Monk B., Perlin D. S. 1994; Fungal plasma membrane proton pumps as promising new antifungal targets. Crit Rev Microbiol 20:209–223 [CrossRef]
    [Google Scholar]
  39. Murphy J. W. 1991; Mechanisms of natural resistance to human pathogenic fungi. Annu Rev Microbiol 45:509–538 [CrossRef]
    [Google Scholar]
  40. Negredo A., Monteoliva L., Gil C., Pla J., Nombela C. 1997; Cloning, analysis and one-step disruption of the ARG5 , 6 gene of Candida albicans . Microbiology 143:297–302 [CrossRef]
    [Google Scholar]
  41. Petit T., Gancedo C. 1999; Molecular cloning and characterization of the gene HXK1 encoding the hexokinase from Yarrowia lipolytica . Yeast 15:1573–1584 [CrossRef]
    [Google Scholar]
  42. Petit T., Blázquez M. A., Gancedo C. 1996; Schizosaccharomyces pombe possesses an unusual and a conventional hexokinase: biochemical and molecular characterization of both hexokinases. FEBS Lett 378:185–189 [CrossRef]
    [Google Scholar]
  43. Ramon A. M., Porta A., Fonzi W. A. 1999; Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2 . J Bacteriol 181:7524–7530
    [Google Scholar]
  44. Reinders A., Bürckert N., Hohmann S., Thevelein J. M., Boller T., Wiemken A., De Virgilio C. 1997; Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24:687–695 [CrossRef]
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Sarthy A. V., McGonigal T., Coen M., Frost D. J., Meulbroek J. A., Goldman R. C. 1997; Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-β-glucosyltransferase. Microbiology 143:367–376 [CrossRef]
    [Google Scholar]
  47. Schwartz D. S., Larsh H. W. 1980; An effective medium for the selective growth of yeast or mycelial forms of Candida albicans : biochemical aspects of the two forms. Mycopathologia 17:67–75
    [Google Scholar]
  48. Stratford M. 1989; Yeast flocculation: calcium specificity. Yeast 5:487–496 [CrossRef]
    [Google Scholar]
  49. Van Laere A. 1989; Trehalose, reserve and/or stress protectant?. FEMS Microbiol Rev 63:201–210
    [Google Scholar]
  50. Varela J. C. S., Praekelt U. M., Meacock P. A., Planta R. J., Mager W. H. 1995; The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 15:6232–6245
    [Google Scholar]
  51. Verduyn Lunel F. M., Meis J. F., Voss A. 1999; Nosocomial fungal infections: candidemia. Diagn Microbiol Infect Dis 34:213–220 [CrossRef]
    [Google Scholar]
  52. Werner-Washburne M., Braun E. L., Crawford M. E., Peck V. M. 1996; Stationary phase in Saccharomyces cerevisiae . Mol Microbiol 19:1159–1166 [CrossRef]
    [Google Scholar]
  53. Wright R., Basson M., D’Ari L., Rine J. 1988; Increased amounts of HMG-CoA reductase induce ‘karmellae’: a proliferation of stacked membrane pairs surrounding the yeast nucleus. J Cell Biol 107:101–114 [CrossRef]
    [Google Scholar]
  54. Zaragoza O., Blázquez M. A., Gancedo C. 1998; Disruption of the Candida albicans TPS1 gene encoding trehalose-6-P synthase impairs formation of hyphae and decreases infectivity. J Bacteriol 180:3809–3815
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1281
Loading
/content/journal/micro/10.1099/00221287-148-5-1281
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error