1887

Abstract

When is subjected to phosphate starvation, the Pho and σ-dependent general stress regulons are activated to elicit, respectively, specific and non-specific responses to this nutrient-limitation stress. A set of isogenic mutants, with a β-galactosidase reporter gene transcriptionally fused to the inactivated target gene, was used to identify genes of unknown function that are induced or repressed under phosphate limitation. Nine phosphate-starvation-induced () genes were identified: , , and were regulated by the PhoP–PhoR two-component system responsible for controlling the expression of genes in the Pho regulon, while (renamed ), , , and were dependent on the alternative sigma factor σ, which controls the expression of the general stress genes. Genes and are unique members of the Pho regulon, since they are phosphate-starvation induced via PhoP–PhoR from a sporulation-specific σ promoter or a promoter that requires the product of a σ-dependent gene. Null mutations in key regulatory genes and showed that the Pho and σ-dependent general stress regulons of interact to modulate the levels at which each are activated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1593
2002-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481593a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1593&mimeType=html&fmt=ahah

References

  1. Akbar S., Kang C. M., Gaidenko T. A., Price C. W. 1997; Modulator protein RsbR regulates environmental signalling in the general stress pathway of Bacillus subtilis . Mol Microbiol 24:567–578 [CrossRef]
    [Google Scholar]
  2. Akbar S., Gaidenko T. A., Kang C. M., O’Reilly M., Devine K. M., Price C. W. 2001; New family of regulators in the environmental signaling pathway which activates the general stress transcription factor σB of Bacillus subtilis . J Bacteriol 183:1329–1338 [CrossRef]
    [Google Scholar]
  3. Antelmann H., Scharf C., Hecker M. 2000; Phosphate starvation-inducible proteins of Bacillus subtilis : proteomics and transcriptional analysis. J Bacteriol 182:4478–4490 [CrossRef]
    [Google Scholar]
  4. Benson A. K., Haldenwang W. G. 1993; Bacillus subtilis σB is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc Natl Acad Sci USA 90:2330–2334 [CrossRef]
    [Google Scholar]
  5. Birkey S. M., Sun G., Piggot P. J., Hulett F. M. 1994; A pho regulon promoter induced under sporulation conditions. Gene 119:95–100
    [Google Scholar]
  6. Bookstein C., Edwards C. W., Kapp N. V., Hulett F. M. 1990; The Bacillus subtilis 168 alkaline phosphatase III gene: impact of a phoAIII mutation on total alkaline phosphatase synthesis. J Bacteriol 172:3730–3737
    [Google Scholar]
  7. Brody M. S., Vijay K., Price C. W. 2001; Catalytic function of an α/β hydrolase is required for energy stress activation of the σB transcription factor in Bacillus subtilis . J Bacteriol 183:6422–6428 [CrossRef]
    [Google Scholar]
  8. Chesnut R. S., Brookstein C., Hulett F. M. 1991; Separate promoters direct expression of phoAIII , a member of the Bacillus subtilis alkaline phosphatase multigene family, during phosphate starvation and sporulation. Mol Microbiol 5:2181–2190 [CrossRef]
    [Google Scholar]
  9. Dufour A., Haldenwang W. G. 1994; Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J Bacteriol 176:1813–1820
    [Google Scholar]
  10. Eder S., Shi L., Jensen K., Yamane K., Hulett F. M. 1996; A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a Pho regulon gene, phoD . Microbiology 142:2041–2047 [CrossRef]
    [Google Scholar]
  11. Eder S., Liu W., Hulett F. M. 1999; Mutational analysis of the phoD promoter in Bacillus subtilis : implications for PhoP binding and promoter activation of Pho regulon promoters. J Bacteriol 181:2017–2025
    [Google Scholar]
  12. Fawcett P., Eichenberger P., Losick R., Youngman P. 2000; The transcriptional profile of early to middle sporulation in Bacillus subtilis . Proc Natl Acad Sci USA 97:8063–8068 [CrossRef]
    [Google Scholar]
  13. Gaidenko T. A., Price C. W. 1998; General stress transcription factor σB and sporulation sigma factor σH each contribute to survival of Bacillus subtilis under extreme conditions. J Bacteriol 180:3730–3733
    [Google Scholar]
  14. Harwood C. R., Wipat A. 1996; Sequencing and functional analysis of the genome of Bacillus subtilis strain 168. FEBS Lett 389:84–87 [CrossRef]
    [Google Scholar]
  15. Hecker M., Völker U. 1998; Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the σB regulon. Mol Microbiol 29:1129–1136 [CrossRef]
    [Google Scholar]
  16. Hulett F. M. 1996; The signal-transduction network for Pho regulation in Bacillus subtilis . Mol Microbiol 19:933–939 [CrossRef]
    [Google Scholar]
  17. Hulett F. M., Bookstein C., Jensen K. 1990; Evidence for two structural genes for alkaline phosphatase in Bacillus subtilis . J Bacteriol 172:735–740
    [Google Scholar]
  18. Hulett F. M., Lee J., Shi L., Sun G., Chesnut R., Sharkova E., Duggan M. F., Kapp N. 1994; Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis . J Bacteriol 176:1348–1358
    [Google Scholar]
  19. Igo M., Lampe M., Ray C., Schafer W., Losick R., Moran C. P. Jr 1987; Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis . J Bacteriol 169:3464–3469
    [Google Scholar]
  20. Kunst F., Ogasawara N., Moszer I. 148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  21. Lahooti M., Harwood C. R. 1999; Transcriptional analysis of the Bacillus subtilis teichuronic acid operon. Microbiology 145:3409–3417
    [Google Scholar]
  22. Lahooti M., Harwood C. R., Prágai Z. 2000; Phosphate regulation. In Functional Analysis of Bacterial Genes: a Practical Manual pp 237–244 Edited by Schumann W. Ehrlich S. D., Ogasawara N. Chichester: Wiley;
    [Google Scholar]
  23. Liu W., Hulett F. M. 1998; Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site. Microbiology 144:1443–1450 [CrossRef]
    [Google Scholar]
  24. Liu W., Eder S., Hulett F. M. 1998; Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for Pho∼P. J Bacteriol 180:753–758
    [Google Scholar]
  25. Miller J. H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Mogk A., Hayward R., Schumann W. 1996; Integrative vectors for constructing single-copy transcriptional fusions between Bacillus subtilis promoters and various reporter genes encoding heat-stable enzymes. Gene 182:33–36 [CrossRef]
    [Google Scholar]
  27. Müller J. P., An Z., Merad T., Hancock I. C., Harwood C. R. 1997; Influence of Bacillus subtilis phoR on cell wall anionic polymers. Microbiology 143:947–956 [CrossRef]
    [Google Scholar]
  28. Nakano M. M., Zhu Y., LaCelle M., Zhang X., Hulett F. M. 2000; Interaction of ResD with regulatory regions of anaerobically induced genes of Bacillus subtilis . Mol Microbiol 37:1198–1207 [CrossRef]
    [Google Scholar]
  29. Nicholson W. L., Setlow P. 1990; Sporulation, germination and outgrowth. In Molecular Biological Methods for Bacillus pp 391–450 Edited by Harwood C. R. Cutting S. M. Chichester: Wiley;
    [Google Scholar]
  30. Prágai Z., Harwood C. R. 2000a; Screening for mutants affected in their response to phosphate. In Functional Analysis of Bacterial Genes: a Practical Manual pp 245–249 Edited by Schumann W. Ehrlich S. D., Ogasawara N. Chichester: Wiley;
    [Google Scholar]
  31. Prágai Z., Harwood C. R. 2000b; YsxC, a putative GTP-binding protein essential for the growth of Bacillus subtilis 168. J Bacteriol 182:6819–6823 [CrossRef]
    [Google Scholar]
  32. Prágai Z., Tjalsma H., Bolhuis A., Venema G., Bron S., van Dijl J. M. 1997; The signal peptidase II ( lsp ) gene of Bacillus subtilis . Microbiology 143:1327–1333 [CrossRef]
    [Google Scholar]
  33. Prágai Z., Eschevins C., Bron S., Harwood C. R. 2001; Bacillus subtilis NhaC, an Na+/H+ antiporter, influences expression of the phoPR operon and production of alkaline phosphatases. J Bacteriol 183:2505–2515 [CrossRef]
    [Google Scholar]
  34. Qi Y., Kobayashi Y., Hulett F. M. 1997; The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in the regulation of the Pho regulon. J Bacteriol 179:2534–2539
    [Google Scholar]
  35. Robichon D., Arnaud M., Gardan R., O’Reilly M., Rapoport G., Debarbouille M., Prágai Z. 2000; Expression of a new operon from Bacillus subtilis , ykzB-ykoL , under the control of the TnrA and PhoP-PhoR global regulators. J Bacteriol 182:1226–1231 [CrossRef]
    [Google Scholar]
  36. Steinmetz M., Richter R. 1994; Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis , through in vivo recombination. Gene 142:79–83 [CrossRef]
    [Google Scholar]
  37. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic inactivation in Bacillus subtilis . Microbiology 144:3097–3104 [CrossRef]
    [Google Scholar]
  38. Vijay K., Brody M. S., Fredlund E., Price C. W. 2000; A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the σB transcription factor of Bacillus subtilis . Mol Microbiol 35:180–185 [CrossRef]
    [Google Scholar]
  39. Voelker U., Voelker A., Haldenwang W. G. 1996; Reactivation of the Bacillus subtilis anti-σB antagonist, RsbV, by stress- or starvation-induced phosphatase activities. J Bacteriol 178:5456–5463
    [Google Scholar]
  40. Voelker U., Luo T., Smirnova N., Haldenwang W. G. 1997; Stress activation of Bacillus subtilis σB can occur in the absence of the σB negative regulator RsbX. J Bacteriol 179:1980–1984
    [Google Scholar]
  41. Yang X., Kang C. M., Brody M. S., Price C. W. 1996; Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev 10:2265–2275 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1593
Loading
/content/journal/micro/10.1099/00221287-148-5-1593
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error