1887

Abstract

SUMMARY: Forty-three separately isolated cyst(e)ineless mutants of were investigated biochemically. Six main phenotypes were identified, accommodating thirty-nine of the mutants; the remaining four mutants were of intermediate phenotype. The phenotypes are suggested to result from a series of five metabolic blocks in a pathway of cyst(e)ine synthesis in which sulphate can be reduced by two alternative routes, in both of which most of the intermediates are inorganic.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-18-1-140
1958-02-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/18/1/mic-18-1-140.html?itemId=/content/journal/micro/10.1099/00221287-18-1-140&mimeType=html&fmt=ahah

References

  1. Chapeville F., Fromageot P. 1954; La formation enzymatique de l’acide cystinesulfinique à partir de sulfite. Biochim. biophys. Acta 14:415
    [Google Scholar]
  2. Demerec M. 1956; Terminology and Nomenclature. In Genetic Experiments with Bacteria. Publ. Carneg. Inst 612:1
    [Google Scholar]
  3. Demerec M., Cahn E. 1953; Studies on mutability in nutritionally deficient strains of Escherichia coli. 1. Genetic analysis of five auxotrophic strains. J. Bact 65:27
    [Google Scholar]
  4. Hershey A. D. 1955; An upper limit to the protein content of the germinal substance of bacteriophage T2. Virology 1:108
    [Google Scholar]
  5. Hockenhull D. J. D. 1949; The sulfur metabolism of mold fungi. The use of biochemical mutant strains of Aspergillus nidulans in elucidating the biosynthesis of cystine. Biochim. biophys. Acta 3:326
    [Google Scholar]
  6. Horowitz N. H. 1950; Biochemical genetics of Neurospora . Advanc. Genet 3:33
    [Google Scholar]
  7. Horowitz N. H. 1955 Symposium on Amino acid Metabolism Discussion 631 Baltimore: The Johns Hopkins Press;
    [Google Scholar]
  8. Lampen J. O., Roepke R. R., Jones M. J. 1947; Studies on the sulfur metabolism of E. coli. III. Mutant strains of E. coli unable to use sulfate for their complete sulfur requirements. Arch. Biochem 13:55
    [Google Scholar]
  9. Lederberg J. 1950; Isolation and characterization of biochemical mutants of bacteria. Meth. med. Res 3:5
    [Google Scholar]
  10. Newton Friend J. ed 1947 Textbook of Inorganic Chemistry 7124 London: Griffin;
    [Google Scholar]
  11. Phinney B. O. 1948; Abstract in Genetics . 33:624
    [Google Scholar]
  12. Roberts R. B., Abelson P. H., Cowie D. B., Bolton E. T., Britten R. J. 1955; Studies of biosynthesis in Escherichia coli . Publ. Carneg. Inst 607 Washington, D.C:
    [Google Scholar]
  13. Shepherd C. J. 1956; Pathways of cysteine synthesis in Aspergillus nidulans . J. gen. Microbiol 15:29
    [Google Scholar]
  14. Simmonds S. 1948; Utilization of sulfur containing amino acids by mutant strains of Escherichia coli . J. biol. Chem 174:717
    [Google Scholar]
  15. Steinberg R. A. 1941; Sulfur and trace element nutrition of Aspergillus niger . J. Agric. Res 63:109
    [Google Scholar]
  16. Zinder N. D., Lederberg J. 1952; Genetic exchange in Salmonella. J. Bact 64:679
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-18-1-140
Loading
/content/journal/micro/10.1099/00221287-18-1-140
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error