1887

Abstract

Summary: DNA-DNA reassociation studies showed that strains had a genetic relatedness of 91 to 100% with inter-strain duplexes having high thermal stabilities. The only exception, strain 10016, had an average relatedness of only 43% to other strains of The apparent divergence in DNA base sequence of this strain was reflected in the structural differences of some enzymes. There was a gradation of DNA relatedness among the group II-b strains, but three strains were sufficiently related to constitute a species. Low levels of genetic relatedness were confirmed between and strains of group II-b, group II-f, and All strains had base compositions in the range 32 to 46% guanine plus cytosine. The genome sizes of representative strains of and group II-b were 2·50 × 10 to 3·52 × 10 daltons, whereas the group II-f strains had smaller genomes of 1·64 × 10 to 1·81 × 10 daltons. The taxonomic implications of these findings are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-93-1-89
1976-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/93/1/mic-93-1-89.html?itemId=/content/journal/micro/10.1099/00221287-93-1-89&mimeType=html&fmt=ahah

References

  1. Bonner T.I., Brenner D. J., Neufeld B. R., Britten R. J. 1973; Reduction in the rate of DNA reassociation by sequence divergence. Journal of Molecular Biology 81:123–135
    [Google Scholar]
  2. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. International Journal of Systematic Bacteriology 23:298–307
    [Google Scholar]
  3. Brenner D. J., Fanning G. R., Rake A. V., Johnson K. E. 1969; Batch procedure for thermal elution of DNA from hydroxyapatite. Analytical Biochemistry 28:447–459
    [Google Scholar]
  4. Britten R. J., Kohne D. E. 1966; Nucleotide sequence repetition in DNA. Yearbook of the Carnegie Institution, Washington 65:78–106
    [Google Scholar]
  5. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal 62:315–323
    [Google Scholar]
  6. Christiansen C., Christiansen G., Bak A. L. 1973; The influence of glucosylation on the renaturation rate of T4 phage DNA. Biochemical and Biophysical Research Communications 52:1426–1433
    [Google Scholar]
  7. De Ley J. 1969; Compositional nucleotide distribution and the theoretical prediction of homology in bacterial DNA. Journal of Theoretical Biology 22:89–116
    [Google Scholar]
  8. De Ley J., Tijtgat R., De Smedt J., Michiels M. 1973; Thermal stability of DNA:DNA hybrids within the genus Agrobacterium. Journal of General Microbiology 78:241–252
    [Google Scholar]
  9. De Ley J., Van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek 29:344–358
    [Google Scholar]
  10. Ferrari A., Cavazzoni V. 1972; Composizione in basi dell’acido desossiribonucleico di ceppi di flavobatteri. Annali di Microbiologia ed Enzymologia 22:137–143
    [Google Scholar]
  11. Flamm FT. 1956; Moraxella saccharolytica (sp. n) aus dem Liquor eines Kindes mit Meningitis. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Abteilung (1) 168:261–267
    [Google Scholar]
  12. Gillis M., De Ley J., De Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. European Journal of Biochemistry 12:143–153
    [Google Scholar]
  13. Grindley N. D.F., Humphreys G. O., Anderson E. S. 1973; Molecular studies of R factor compatibility groups. Journal of Bacteriology 115:387–398
    [Google Scholar]
  14. Hendrie M. S., Mitchell T. G., Shewan J. M. 1968; The identification of yellow pigmented rods. In Identification Methods for Microbiologists B pp. 67–78 Gibbs B. M., Shapton D. A. Edited by London:: Academic Press;
    [Google Scholar]
  15. Henriksen S. D. 1973; Moraxella, Acinetobacter, and the Mimeae. Bacteriological Reviews 37:522–561
    [Google Scholar]
  16. Hill L. R. 1968; The determination of deoxyribonucleic acid base compositions and its application to bacterial taxonomy. In Identification Methods for Microbiologists B pp. 177–186 Gibbs B. M., Shapton D. A. Edited by London:: Academic Press;
    [Google Scholar]
  17. Johnson J. L. 1973; Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. International Journal of Systematic Bacteriology 23:308–315
    [Google Scholar]
  18. King E. O. 1959; Studies on a group of previously unclassified bacteria associated with meningitis in infants. American Journal of Clinical Pathology 31:241–247
    [Google Scholar]
  19. Lapage S. P., Owen R. J. 1973; Flavobacterium meningosepticum from cases of meningitis in Botswana and England. Journal of Clinical Pathology 26:747–749
    [Google Scholar]
  20. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  21. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  22. McCarthy B. J., Farquhar M. N. 1972; The rate of change of DNA in evolution. Brookhaven Symposia in Biology 23:1–41
    [Google Scholar]
  23. McMeekin T. A., Stewart D. B., Murray J. G. 1972; The Adansonian taxonomy and the deoxyribonucleic acid base composition of some Gram negative, yellow pigmented rods. Journal of Applied Bacteriology 35:129–137
    [Google Scholar]
  24. Mitchell T. G., Hendrie M. S., Shewan J. M. 1969; The taxonomy, differentiation and identification of Cytophaga species. Journal of Applied Bacteriology 32:40–50
    [Google Scholar]
  25. Owen R. J., Lapage S. P. 1974; A comparison of strains of King’s group IIb of Flavobacterium (with Flavobacterium meningosepticum). Antonie van Leeuwenhoek 40:255–264
    [Google Scholar]
  26. Owen R. J., Snell J. J.S. 1973; Comparison of group IIf with Flavobacterium and Moraxella. Antonie van Leeuwenhoek 39:473–480
    [Google Scholar]
  27. Perry L. B. 1973; Gliding motility in some non-spreading flexi-bacteria. Journal of Applied Bacteriology 36:227–232
    [Google Scholar]
  28. Snell J. J.S., Hill L. R., Lapage S. P. 1972; Identification and characterization of Moraxella phenyl-pyruvica. Journal of Clinical Pathology 25:959–965
    [Google Scholar]
  29. Sottile M. I., Baldwin J. N., Weaver R. E. 1973; Deoxyribonucleic acid hybridization studies on Flavobacterium meningosepticum. Applied Microbiology 26:535–539
    [Google Scholar]
  30. Studier F. W. 1965; Sedimentation studies of the size and shape of DNA. Journal of Molecular Biology 11:373–390
    [Google Scholar]
  31. Szybalski W. 1968; Use of cesium sulfate for equilibrium density gradient centrifugation. In Methods in Enzymology, Nucleic Acids 12B pp. 330–360 Grossman L., Moldave K. Edited by London:: Academic Press;
    [Google Scholar]
  32. Weeks O. B. 1974; Genus Flavobacterium Bergey et al. 1923. In Bergey’s Manual of Determinative Bacteriology, 8th edn.. pp. 357–364 Buchanan R. E, Gibbons N. E. Edited by Baltimore:: Williams and Wilkins;
    [Google Scholar]
  33. Wetmur J. G., Davidson N. 1968; Kinetics of renaturation of DNA. Journal of Molecular Biology 31:349–370
    [Google Scholar]
  34. Zadrazil S., Satava J., Sormova Z. 1973; Isolation precedure for bacteiial DNA based on gel permeation chromatography on a sepharose column. Journal of Chromatography 91:451–458
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-93-1-89
Loading
/content/journal/micro/10.1099/00221287-93-1-89
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error