1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-11-2907
1994-11-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/11/mic-140-11-2907.html?itemId=/content/journal/micro/10.1099/13500872-140-11-2907&mimeType=html&fmt=ahah

References

  1. Akrim M., Bally M., Ball G., Tommassen J., Teerink H., Filloux A., Lazdunski A. xrp-mediated protein secretion in Pseudomonas aeruginosa-, identification of two additional genes and evidence for regulation of xcp gene expression. Mol Microbiol 1993; 10:431–443
    [Google Scholar]
  2. Angus B.L., Fyfe J.A.M., Hancock R.E.W. Mapping and characterization of two mutations to antibiotic supersusceptibility in Pseudomonas aeruginosa. Gen Microbiol 1987; 133:2905–2914
    [Google Scholar]
  3. Ankenbauer R.G., Quan H.N. FptA, the Fe(III)- pyochelin receptor of Pseudomonas aeruginosa, a phenolate siderophore receptor homologous to hydroxamate siderophore receptor with homology to hydroxamate siderophore receptors. J Bacteriol 1994; 176:307–319
    [Google Scholar]
  4. Ankenbauer R.G., Hanne L.F., Cox C.D. Mapping of mutations in Pseudomonas aeruginosa defective in pyoverdin production. J Bacteriol 1986; 167:7–11
    [Google Scholar]
  5. Arai H., Igarashi Y., Kodama T. Anaerobically induced expression of the nitrite reductase cytochrome r-551 operon from Pseudomonas aeruginosa. FEBS Eett 1991; 2:351–353
    [Google Scholar]
  6. Bally M., Wretlind B., Lazdunski A. Protein secretion in Pseudomonas aeruginosa-, molecular cloning and characterization of the xcp-1 gene. J Bacteriol 1989; 171:4342–4348
    [Google Scholar]
  7. Bally M., Ball G., Lazdunski A. A new cluster of three tRNA genes in Pseudomonas aeruginosa. Nucleic Acids Res 1992a; 20:3779–1
    [Google Scholar]
  8. Bally M., Filloux A., Akrim M., Ball G., Lazdunski A., Tommassen J. Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilinpeptidase. Mol Microbiol 1992b; 6:1121–1131
    [Google Scholar]
  9. Bjorklind A., Wretlind B., Mollegard I., Schad P.A., Iglewski B.H., Cox C.D. Genetic mapping and characterization of Pseudomonas aeruginosa mutants that hyperproduce exoproteins. J Bacterial 1985; 162:1329–1331
    [Google Scholar]
  10. Bourdineaud J.-P., Heierli D., Gamper M., Verhoogt H.J.C., Driessen A.J.M., Konings W.N., Lazdunski C., Haas D. Characterization of the arcD arginine: ornithine exchanger of Pseudomonas aeruginosa. J Biol Chem 1993; 268:5417–5424
    [Google Scholar]
  11. Bourdineaud J.-P., Heierli D., Gamper M., Verhoogt H.J.C., Driessen A.J.M., Konings W.N., Lazdunski C., Haas D. Regulation of tryptophan biosynthesis in Pseudomonas aeruginosa. Mol & Gen Genet 1993; 121:117–132
    [Google Scholar]
  12. Carey K.E., Krishnapillai V. Location of prophage H90 on the chromosome of Pseudomonas aeruginosa PAO. Genet Res 1974; 23:155–169
    [Google Scholar]
  13. Carey K.E., Krishnapillai V. Chromosomal location of prophage J51 in Pseudomonas aeruginosa strain PAO. Genet Res 1975; 25:179–187
    [Google Scholar]
  14. Chang M., Crawford J.P. The role of indoleglycerol phosphate and the TrpI protein in the expression of trpBA from Pseudomonas aeruginosa. Nucleic Acids Res 1990; 18:979–988
    [Google Scholar]
  15. Chitnis C.E., Ohman D.E. Cloning of Pseudomonas aeruginosa algC which controls alginate structure. J Bacteriol 1990; 172:2894–2900
    [Google Scholar]
  16. Chitnis C.E., Ohman D.E. Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 1993; 8:583–590
    [Google Scholar]
  17. Clepet C., Borne F., Krishnapillai V., Baird C., Patte J.C., Cami B. Isolation, organization and expression of the Pseudomonas aeruginosa threonine genes. Mol Microbiol 1992; 6:3109–3119
    [Google Scholar]
  18. Cuskey S.M., Phibbs P.V. Jr Chromosomal mapping of mutations affecting glycerol and glucose catabolism in Pseudomonas aeruginosa PAO. J Bacteriol 1985; 162:872–880
    [Google Scholar]
  19. Cuskey S.M., Wolff J.A., Phibbs P.V. Jr, Olsen R.H. Cloning of genes specifying carbohydrate metabolism in Pseudomonas aeruginosa and Pseudomonas putida. J Bacteriol 1985; 162:865–871
    [Google Scholar]
  20. Cuskey S., Peccoraro V., Olsen R.H. Initial catabolism of aromatic biogenic amines by Pseudomonas aeruginosa PAO: pathway description, mapping of mutations and cloning of essential genes. J Bacteriol 1987; 169:2398–2404
    [Google Scholar]
  21. Darzins A. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric single domain response regulator cheY. J Bacteriol 1993; 175:5934–5944
    [Google Scholar]
  22. Darzins A. Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol Microbiol 1994; 11:137–153
    [Google Scholar]
  23. Darzins A., Wang S.-K., Vanags R.I., Chakrabarty A.M. Clustering of mutants affecting alginic acid biosynthesis in mucoid Pseudomonas aeruginosa. J Bacteriol 1985; 164:516–524
    [Google Scholar]
  24. Day M., Potts R.J., Clarke P.H. Location of genes for the utilization of acetamide, histidine and proline on the chromosome of Pseudomonas aeruginosa. Genet Res 1975; 25:71–78
    [Google Scholar]
  25. Deretic V., Gill J.F., Chakrabarty A.M. Gene algD coding for GDP mannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J Bacteriol 1987; 169:351–358
    [Google Scholar]
  26. Deretic V., Dikshit R., Konyecsni M., Chakrabarty A.M., Misra T.K. The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 1989; 171:1278–1283
    [Google Scholar]
  27. Drew R.E., Wilson S. Regulation of amidase expression in Pseudomonas aeruginosa. In Pseudomonas. Molecular Biology and Biotechnology 1992 Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology; pp 207–213
    [Google Scholar]
  28. Essar D.W., Eberly L., Han C.-Y., Crawford I.P. DNA sequences and characterization of four early genes of the tryptophan pathway in Pseudomonas aeruginosa. J Bacteriol 1990; 172:853–866
    [Google Scholar]
  29. Farinha M.A., Ronald S.L., Kropinski A.M., Paranchych W. Localization of the virulence-associated genes pil A, pilR, rpoN, fliA, fliC, ent, fbp on the physical map of Pseudomonas aeruginosa PAOl by pulsed-field electrophoresis. Infect Immun 1993; 61:1571–1575
    [Google Scholar]
  30. Filloux A., Bally M., Murgier M., Wretlind B., Lazdunski A. Cloning of xcp genes located at the 55 min region of the chromosome and involved in protein secretion in Pseudomonas aeruginosa. Mol Microbiol 1989; 3:261–265
    [Google Scholar]
  31. Franklin M.J., Ohman D.E. Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 1993; 175:5057–5065
    [Google Scholar]
  32. Friih R. Rekombination undStickstoff-regulation bei Pseudomonas aeruginosa: Untersuchungen an Mutanen 1984 PhD thesis, Eidgenossische Technische Hochschule, Zurich;
    [Google Scholar]
  33. Friih R., Watson J.M., Haas D. Construction of recombination deficient strains of Pseudomonas aeruginosa. Mol & Gen Genet 1983; 191:334–337
    [Google Scholar]
  34. Friih R., Haas D., Leisinger T. Altered control of glutamate dehydrogenases in ornithine utilization mutants of Pseudomonas aeruginosa. Arch Microbiol 1985; 141:170–176
    [Google Scholar]
  35. Fukuda H., Hosaka M., Harai K., lyobe S. New norfloxacin-resistance gene in Pseudomonas aeruginosa PAO. Antimicrob Agents Ghemother 1990; 34:1757–1761
    [Google Scholar]
  36. Fyfe J.A.M., Govan J.R.W. Synthesis, regulation and biological function of bacterial alginate. In Progress in Industrial Microbiology 1983 Edited by Bushell M.E. Amsterdam: Elsevier; pp 45–83
    [Google Scholar]
  37. Fyfe J.A.M., Govan J.R.W. Chromosomal loci associated with antibiotic hypersensitivity in pulmonary isolates of Pseudomonas aeruginosa. J Gen Microbiol 1984; 130:825–834
    [Google Scholar]
  38. Galimand M., Gamper M., Zimmermann A., Haas D. Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J Bacteriol 1991; 173:1598–1606
    [Google Scholar]
  39. Goldberg J.B., Ohman D.E. Construction and characterization of Pseudomonas aeruginosa algB mutants: role of algB in high level production of alginate. J Bacteriol 1987a; 169:1593–1602
    [Google Scholar]
  40. Goldberg J.B., Ohman D.E. Cloning and transcriptional regulation of the elastase las A in mucoid and non mucoid Pseudomonas aeruginosa. J Bacteriol 1987b; 169:4532–4539
    [Google Scholar]
  41. Goldberg J.B., Hatano K., Pier G.B. Synthesis of lipopolysaccharide O side chains by Pseudomonas aeruginosa PAOl requires the enzyme phosphomannomutase. J Bacteriol 1993; 175:1605–1611
    [Google Scholar]
  42. Gotoh N., Hanehara C., Tanino T. Isolation and characteristics of a short rod shaped mutant of Pseudomonas aeruginosa. FEMS Microbiol Eett 1984; 24:345–349
    [Google Scholar]
  43. Gray G.L., Vasil M.L. Mapping of a gene controlling the production of phospholipase C and alkaline phosphatase in Pseudomonas aeruginosa. Mol & Gen Genet 1981a; 183:403–405
    [Google Scholar]
  44. Gray G.L., Vasil M.L. Isolation and genetic characterization of toxin-deficient mutants of Pseudomonas aeruginosa PAO. J Bacteriol 1981b; 147:275–281
    [Google Scholar]
  45. Gray G.L., Berka R.M., Vasil M.L. Phospholipase C regulatory mutation of Pseudomonas aeruginosa that results in constitutive synthesis of several phosphate-repressible proteins. J Bacteriol 1982; 150:1221–1226
    [Google Scholar]
  46. Haas D., Holloway B.W. Chromosome mobilization by the R plasmid R68.45: a tool in Pseudomonas genetics. Mol & Gen Genet 1978; 158:229–237
    [Google Scholar]
  47. Haas D., Holloway B.W., Schambock A., Leisinger T. The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol & Gen Genet 1977; 154:7–22
    [Google Scholar]
  48. Haas D., Matsumoto H., Moretti P., Stalon V., Mercenier A. Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways. Mol & Gen Genet 1984; 193:437–444
    [Google Scholar]
  49. Hanne L., Howe T., Iglewski B. Locus of the Pseudomonas toxin A gene. J Bacteriol 1983; 154:383–386
    [Google Scholar]
  50. Hassett D.J., Woodruff W.A., Wozniak D.J., Vasil M.L., Cohen M.S., Ohman D.E. Cloning and characterization of the Pseudomonas aeruginosa sod A and sodB genes encoding manganese- and iron-cofactored superoxide dismutase: demonstration of increased manganese superoxide dismutase activity in alginate-producing bacteria. J Bacteriol 1993; 175:7658–7665
    [Google Scholar]
  51. Hayashi T., Matsumoto H., Ohnishi M., Terawaki Y. Molecular analysis of a cytotoxin converting phage, CTX, of Pseudomonas aeruginosa: structure of the attP-cos-ctx-region and integration into the serine tRNA gene. Mol Microbiol 1993; 7:657–667
    [Google Scholar]
  52. Herrmann H., Klopotowski T., Gunther E. The Hfr status of Pseudomonas aeruginosa is stabilized by integrative suppression. Mol & Gen Genet 1986; 204:519–523
    [Google Scholar]
  53. Hirai K., Suzue S., Irikura I., lyobe S., Mitsuhashi S. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1987; 31:582–586
    [Google Scholar]
  54. Hobbs M., Coilie E.S.R., Free P.D., Livingston S.P., Mattick J.S. PilS and PilR, a two component transcriptional regulatory system controlling expression of type 4 fimbnae in Pseudomonas aeruginosa. Mol Microbiol 1993; 7:669–682
    [Google Scholar]
  55. Hohnadel D., Haas D., Meyer J.M. Mapping of mutations affecting pyoverdin biosynthesis in Pseudomonas aeruginosa. FEMS Microbiol Lett 1986; 36:195–199
    [Google Scholar]
  56. Holloway B.W. Genetics for all bacteria. Annu Rep Genet 1993; 47:659–684
    [Google Scholar]
  57. Holloway B.W., Carey E. Pseudomonas aeruginosa PAO. In Genetic Maps. Locus Maps of Complex Genomes 1993 Edited by O’Brien S.J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 6th edn, pp 2.98–2.105
    [Google Scholar]
  58. Holloway B.W., Matsumoto M. Pseudomonas aeruginosa PAO. In Genetic Maps. Locus Maps of Complex Genomes 1984 Edited by O’Brien S.J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; pp 194–197
    [Google Scholar]
  59. Holloway B.W., Morgan A.F. Genome organizat on in Pseudomonas. Annu Rep Microbiol 1986; 40:79–105
    [Google Scholar]
  60. Holloway B.W., Krishnapillai V., Morgan A.F. Chromosomal genetics of Pseudomonas. Microbiol Rep 1979; 43:73–102
    [Google Scholar]
  61. Holloway B.W., Bowen A., Dharmsthiti S., Krishnapillai V., Morgan A., Ratnaningsih E., Sinclair M. Genetic tools for the manipulation of metabolic pathways. In Proceedings of the 6th International Symposium on the Genetics of Industrial Microorganisms 1990 Edited by Heslot H., Davies J., Florent J., Bobichon L., Durand G., Penasse L. Paris: Society for French Microbiology; GIM90, pp 227–238
    [Google Scholar]
  62. Holloway B.W., Escuadra M.D., Morgan A.F., Saffery R., Krishnapillai V. The new approaches to whole genome analysis of bacteria. FEMS Microbiol Lett 1992; 100:101–106
    [Google Scholar]
  63. Holloway B.W., Ratnaningsih E., Krishnapillai V., Tümmler B., Römling U. A physical and genetic map of Pseudomonas aeruginosa PAO. In Genetic Maps. Locus Map of Complex Genomes 1993 Edited by O’Brien S.J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 6th edn, pp 2.93–2.97
    [Google Scholar]
  64. Hoshino T., Tsuda M., lino T., Nishio K., Kageyama M. Genetic mapping of bra genes affecting branched chain amino acid transport in Pseudomonas aeruginosa. J Bacteriol 1983; 153:1272–1281
    [Google Scholar]
  65. Hughes M.A., Jones D.S. A fragment of the Pseudomonas aeruginosa genome contains five tRNA genes, four of which are linked to an EF-TU gene. Nucleic Acids Res 1988; 16:7193
    [Google Scholar]
  66. Itoh Y., Matsumoto H. Mutations affecting regulation of the anabolic argF and the catabolic aru genes in Pseudomonas aeruginosa. Mol & Gen Genet 1992; 231:417–425
    [Google Scholar]
  67. Jann A., Stalon V., van der Wauven C., Leisinger T., Haas D. N2-succinylated intermediates in an arginine catabolic pathway of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 1986; 83:4937–4941
    [Google Scholar]
  68. Janssen D.B., Joosten H.M.L., Herst M.M., van der Drift C. Characterization of glutamine-requiring mutants of Pseudomonas aeruginosa. J Bacteriol 1982; 151:1176–1183
    [Google Scholar]
  69. Jeter R.M., Sias S.R., Ingraham J.L. Chromosomal location and function of genes affecting Pseudomonas aeruginosa nitrate assimilation. J Bacteriol 1984; 157:673–677
    [Google Scholar]
  70. Jeyaseelan K., Guest J.R. Isolation and properties of pyruvate dehydrogenase complex mutants of Pseudomonas aeruginosa PAO. J Gen Microbiol 1980; 120:385–392
    [Google Scholar]
  71. Jeyaseelan K., Guest J.R., Visser J. The pyruvate dehydrogenase complex of Pseudomonas aeruginosa PAO properties and characterization of mutants. J Gen Microbiol 1980; 120:393–402
    [Google Scholar]
  72. Kemp M.B., Hegeman G.D. Genetic control of the β-ketoadipate pathway in Pseudomonas aeruginosa. J Bacteriol 1968; 96:1488–1499
    [Google Scholar]
  73. Kessler E., Safrin M., Olson J.C., Ohman D.E. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 1993; 268:7503–7508
    [Google Scholar]
  74. Kokjohn T.A., Miller R.V. Characterization of the Pseudomonas aeruginosa recA gene. The Les phenotype. J Bacteriol 1988; 170:578–582
    [Google Scholar]
  75. Konyecsni W.M., Deretic V. DNA sequence and expression analysis of algP and algf), components of the multigene system transcriptionally regulating mucoidy in Pseudomonas aeruginosa: algP contains multiple direct repeats. J Bacteriol 1990; 172:2511–2520
    [Google Scholar]
  76. Krishna R.V., Leisinger T. Biosynthesis of proline in Pseudomonas aeruginosa: partial purification and characterization of y- glutamyl kinase. Biochem J 1979; 181:215–222
    [Google Scholar]
  77. Krishnapillai V. Organization of the chromosome of the bacterium Pseudomonas aeruginosa. In Current Topics in Molecular Genetics (Life Science Advances) 1993 pp 187–103
    [Google Scholar]
  78. Kukor J.J., Olsen R.H., Ballou O.P. Cloning and expression of the cat A and catBC gene clusters from Pseudomonas aeruginosa. J Bacteriol 1988; 170:4458–4465
    [Google Scholar]
  79. Kung A.H.C., Lee B.T.O. Genetic analysis of radiation sensitive and chemical mutagen sensitive mutants of Pseudomonas aeruginosa. Mutat Res 1975; 27:191–199
    [Google Scholar]
  80. Kwon D.H., Lu C.-D., Walthall D.A., Brown T.M., Houghton J.E., Abdelal A.T. Structure and regulation of the carAB operon in Pseudomonas aeruginosa and Pseudomonas stutyeri: no untranslated region exists. J Bacteriol 1994; 176:2532–2542
    [Google Scholar]
  81. Lehrbach P.R., Kung A.H.C., Lee B.T.O. Mutants of Pseudomonas aeruginosa deficient in DNA polymerase I. Mutat Res 1976; 41:391–394
    [Google Scholar]
  82. Lehrbach P.R., Dirlze C.D., Lee B.T.O. A mutant of Pseudomonas aeruginosa deficient in an ATP-dependent deoxyribonuclease. J Gen Microbiol 1980; 120:377–384
    [Google Scholar]
  83. Lessie T.G., Phibbs P.V. Jr Alternative pathways of carbohydrate utilization in pseudomonads. Annu Rep Microbiol 1984; 38:359–387
    [Google Scholar]
  84. Lightfoot J., Lam J.S. Chromosomal mapping, expression and synthesis of lipopolysaccharide in Pseudomonas aeruginosa: a role for guanosine diphospho(GDP)-D-mannose. Mol Microbiol 1993; 8:771–782
    [Google Scholar]
  85. Manoharan H.T., Jayaraman K. Mapping of the locus involved in the catabolic oxidation of D-amino acids in Pseudomonas aeruginosa PAO. Mol & Gen Genet 1978; 164:51–56
    [Google Scholar]
  86. Manoharan H.T., Jayaraman K. Mapping of the loci involved in the catabolic oxidation of L-hydroxyproline in Pseudomonas aeruginosa PAO. Mol & Gen Genet 1979; 172:99–105
    [Google Scholar]
  87. Martin D.W., Holloway B.W., Deretic V. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa', algid shows sequence similarities with a Bacillus sigma factor. J Bacteriol 1993a; 175:1153–1164
    [Google Scholar]
  88. Martin D.W., Schurr M.J., Mudd M.H., Deretic V. Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol Microbiol 1993b; 9:497–506
    [Google Scholar]
  89. Martin P.R., Hobbs M., Free P.D., Jeske Y., Mattick J.S. Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 1993c; 9:857–868
    [Google Scholar]
  90. Matsumoto H., Tazaki T. Serotypic recombination in Pseudomonas aeruginosa. In Microbial Drug Resistance 1975 Edited by Mitsuhashi S., Hashimoto H. Tokyo: University of Tokyo Press; pp 281–290
    [Google Scholar]
  91. Matsumoto H., Terawaki Y. Chromosomal location of the genes participating in the formation of /Mactamase in Pseudomonas aeruginosa. In Drug Resistance in Bacteria - Genetics Biochemistry and Molecular Biology 1982 Edited by Mitsuhashi S. Tokyo: Japan Scientific Societies Press; pp 207–212
    [Google Scholar]
  92. Matsumoto H., Ohta S., Kobayashi R., Terawaki Y. Chromosomal location of genes participating in the degradation of purines in Pseudomonas aeruginosa. Mol & Gen Genet 1978; 167:165–176
    [Google Scholar]
  93. Matsumoto H., Nakazawa T., Ohta S., Terawaki Y. Chromosomal locations of cat A, pobA, pcaA, dcu and chu genes in Pseudomonas aeruginosa. Genet Res 1981; 38:251–266
    [Google Scholar]
  94. May T.B., Chakrabarty A.M. A polysaccharide of medical and industrial interest: genes and enzymes of alginate synthesis. Trends Microbiol 1994 (in press)
    [Google Scholar]
  95. McGeorge J., Korolik V., Morgan A.F., Asche V., Holloway B.W. Transfer of a chromosomal locus responsible for mucoid colon v morphology in Pseudomonas aeruginosa isolated from cystic fibrosis patients to P aeruginosa PAO. J Med Microbiol 1986; 21:331–336
    [Google Scholar]
  96. Mee B.J., Lee B.T.O. An analysis of histidine requiring mutants in Pseudomonas aeruginosa. Mol & Gen Genet 1967; 167:165–176
    [Google Scholar]
  97. Miller R.V., Ku C.-M.C. Characterization of Pseudomonas aeruginosa mutants deficient in the establishment of lvsogeny. J Bacteriol 1978; 134:875–883
    [Google Scholar]
  98. Mills B.J., Holloway B.W. Mutants of Pseudomonas aeruginosa that show specific hypersensitivity to aminoglycosides. Antimicrob Agents Chemother 1976; 10:411–416
    [Google Scholar]
  99. Mohr C.D., Sonsteby S.K., Deretic V. The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy algR. Mol & Gen Genet 1994; 242:177–184
    [Google Scholar]
  100. O'Hoy K., Krishnapillai V. Recalibration of the Pseudomonas aeruginosa PAO chromosome map in time units using high-frequency-of recombination donors. Genetics 1987; 115:611–618
    [Google Scholar]
  101. Okii M., lyobe S., Mitsuhashi S. Mapping of the gene specifying aminoglycoside 3'-phosphotransferase II on the Pseudomonas aeruginosa chromosome. J Bacteriol 1983; 155:643–649
    [Google Scholar]
  102. Ostoff R.M., Vasil M.L. Identification of a new phospholipase activity by analysis of an insertion mutation in the hemolytic phospholipase C gene of Pseudomonas aeruginosa. J Bacteriol 1987; 169:4597–4601
    [Google Scholar]
  103. Passador L., Cook J.M., Gambello J., Rust L., Iglewski B.H. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 1993; 260:1127–1130
    [Google Scholar]
  104. Poole K., Neshat S., Krebes K., Heinrichs D.E. Cloning and nucleotide synthesis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa. J Bacteriol 1993; 175:4597–4604
    [Google Scholar]
  105. Prince P.W., Cox C.D., Vasil M.L. Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol 1993; 175:2589–2598
    [Google Scholar]
  106. Pritchard A.E., Vasil M.L. Nucleotide sequence and expression of a phosphate regulated gene encoding a secreted hemolysin of Pseudomonas aeruginosa. J Bacteriol 1986; 167:291–298
    [Google Scholar]
  107. Pritchard A.E., Vasil M.L. Possible insertion sequences in a mosaic genome organization upstream of the exotoxin A gene in Pseudomonas aeruginosa. J Bacteriol 1990; 172:2020–2028
    [Google Scholar]
  108. Rahman M., Clarke P.H. Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa. J Gen Microbiol 1980; 116:357–369
    [Google Scholar]
  109. Ratnaningsih E., Dharmsthiti S., Krishnapillai V., Morgan A., Sinclair M., Holloway B.W. A combined physical and genetic map of Pseudomonas aeruginosa PAO. J Gen Microbiol 1990; 136:2351–2357
    [Google Scholar]
  110. Reimmann C., Haas D. IS2/ insertion of the trfA replication control gene of chromosomally integrated plasmid RP1: a property of stable Pseudomonas aeruginosa Hfr strains. Mol & Gen Genet 1986; 203:511–519
    [Google Scholar]
  111. Rella M., Haas D. Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of /i-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother 1982; 22:242–249
    [Google Scholar]
  112. Rodley P.D., Wards B.J., Loutit J.S., Palmer B.P. Genetic and physical mapping of Tni-generated auxotrophic mutations in Pseudomonas aeruginosa. Can J Microbiol 1994 (in press)
    [Google Scholar]
  113. Roehl R.A., Phibbs P.V. Jr Characterization and genetic mapping of fructose transferase mutations in Pseudomonas aeruginosa. J Bacteriol 1982; 149:897–905
    [Google Scholar]
  114. Roehl R.A., Feary T.W., Phibbs P.V. Jr Clustering of mutations affecting central pathway enzymes of carbohydrate metabolism in Pseudomonas aeruginosa. J Bacteriol 1983; 156:1123–1129
    [Google Scholar]
  115. Rombel I.T., Lamont I.L. DNA homology between siderophore genes from fluorescent pseudomonads. J Gen Microbiol 1992; 138:181–187
    [Google Scholar]
  116. Römling U., Tümmler B. The impact of two-dimensional pulsed-field gel electrophoresis techniques for the consistent and complete mapping of bacterial genomes: refined physical map of Pseudomonas aeruginosa PAO. Nucleic Acids Res 1991; 19:3199–3206
    [Google Scholar]
  117. Römling U., Tümmler B. A Pac\jSwa\ map of the Pseudomonas aeruginosa PAO chromosome. Electrophoresis 1992; 13:649–651
    [Google Scholar]
  118. Römling U., Grothues D., Bautsch W., Tümmler B. A physical genome map of Pseudomonas aeruginosa PAO. EMBO J 1989; 8:4081–4089
    [Google Scholar]
  119. Römling U., Duchenne M., Essar D.W., Galloway D., Guidi-Rontani C., Hill D., Lazdunski A., Miller R.V., Schleifer K.H., Smith D.W., Toschka H.Y., Tümmler B. Localization of alg, opr, phn, phoR, 5S RNA, 6S RNA, tox, trp and xcp genes, rrn operons, and the chromosomal origin on the physical genome map of Pseudomonas aeruginosa PAO. J Bacteriol 1992; 174:327–330
    [Google Scholar]
  120. Ronald S., Farinha M.A., Allan B.J., Kropinski A.M. Cloning and physical mapping of transcriptional regulatory (sigma) factors from Pseudomonas aeruginosa. In Pseudomonas: Molecular Biology and Biotechnology 1992 Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology; pp 249–257
    [Google Scholar]
  121. Rosenberg S.L., Hegeman G.D. Genetics of the mandelate pathway in Pseudomonas aeruginosa. J Bacteriol 1971; 108:1270–1276
    [Google Scholar]
  122. Royle P.L., Matsumoto H., Holloway B.W. Genetic circularity of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol 1981; 145:145–155
    [Google Scholar]
  123. Russell M.A., Darzins A. The pilE gene product of Pseudomonas aeruginosa, required for pilus biogenesis, shares amino acid and sequence identity with the N-termini of type 4 prepilin proteins. Mol Microbiol 1994 (in press)
    [Google Scholar]
  124. Sage A., Temple L., Christie G.E., Phibbs P.V. Jr Two genes for carbohydrate catabolism, edd and gap, are transcribed from the hexC region in Pseudomonas aeruginosa 1993 Abstracts of the 93rd General Meeting of the American Society of Microbiology Washington, DC: American Society for Microbiology;273
    [Google Scholar]
  125. Sambanthamurthi R., Laverack P.D., Clarke P.H. Lysine excretion by a mutant strain of Pseudomonas aeruginosa. FEMS Microbiol Lett 1984; 23:11–15
    [Google Scholar]
  126. Sano Y. Role of the mv4-related gene adjacent to the recA gene in Pseudomonas aeruginosa. J Bacteriol 1993; 175:2451–2454
    [Google Scholar]
  127. Sano Y., Kageyama M. Genetic determinant of pyocin AP41 as an insert in the Pseudomonas aeruginosa chromosome. J Bacteriol 1984; 158:562–570
    [Google Scholar]
  128. Sano Y., Matsui H., Kobayashi M., Kageyama M. Pyocins SI and S2, bacteriocins of Pseudomonas aeruginosa. Iri Pseudomonas 1990 Edited by Silver S., Chakrabarty A.M., Iglewski B., Kaplan S. Washington, DC: American Society for Microbiology; Biotransformations, Pathogenesis and Evolving Technology, pp 352–358
    [Google Scholar]
  129. Schiller N.L., Monday S.R., Boyd C.M., Keen N.T., Ohman D.E. Characterization of the Pseudomonas aeruginosa alginate lyase gene (algL): cloning, sequencing and expression in Escherichia coli. J Bacteriol 1993; 175:4780–4789
    [Google Scholar]
  130. Schweizer H.P. The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa. J Bacteriol 1991; 173:6798–6806
    [Google Scholar]
  131. Shen B.-F., Tai P.G., Pritchard A.E., Vasil M.L. Nucleotide sequences and expression in Escherichia coli of the in phase overlapping Pseudomonas aeruginosaplcR genes. J Bacteriol 1987; 169:4602–4607
    [Google Scholar]
  132. Shinomiya T., Shiga S., Kageyama M. Genetic determinant of pyocin R2 in Pseudomonas aeruginosa PAO I. Localization of the pyocin R2 cluster between the trpCD and trpE genes. Mol & Gen Genet 1983a; 189:375–381
    [Google Scholar]
  133. Shinomiya T., Shiga S., Kikuchi A., Kageyama M. Genetic determination of pyocin R2 in Pseudomonas aeruginosa PAO II. Physical characterization of pyocin R2 genes using R prime plasmids constructed from R6845. Mol & Gen Genet 1983b; 189:382–389
    [Google Scholar]
  134. Shortridge V.D., Pato M.L., Vasil A.I., Vasil M.L. Physical mapping of virulence-associated genes in Pseudomonas aeruginosa by transverse alternating-field electrophoresis. Infect Immun 1991; 59:3596–3603
    [Google Scholar]
  135. Smith C.L., Condemine G. New approaches for physical mapping of small genomes. J Bacteriol 1990; 172:1167–1172
    [Google Scholar]
  136. Smith D.W., Yee T.W., Baird C., Krishnapillai V. Pseudomonad replication origins: a paradigm for bacterial origins. Mol Microbiol 1991; 5:2581–2587
    [Google Scholar]
  137. Soldati L.D., Crockett R., Carrigan J.M., Leisinger T., Holloway B.W., Haas D. Revised location of the hisl and pru (proline utilization) gene on the Pseudomonas aeruginosa chromosome map. Mol & Gen Genet 1984; 193:431–436
    [Google Scholar]
  138. Strom M.S., Nunn D.N., Lory S. A single bifunctional enzyme, PilD, catalyses cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc Natl Acad Sci USA 1993; 90:2404–2408
    [Google Scholar]
  139. Tano K., Bhattacharyja D., Foote R.S., Mural R.J., Mitra S. Site-directed mutation of the Escherichia coli ada gene: effects of substitution of methyl acceptor cysteine-321 by histidine in ada protein. J Bacteriol 1989; 171:1535–1543
    [Google Scholar]
  140. Temple L., Cuskey S.M., Perkins R.E., Bass R.C., Morales N.M., Christie G.E., Olsen R.G., Phibbs P.V. Jr Analysis of cloned structural and regulatory genes for carbohydrate utilization in Pseudomonas aeruginosa PAO. J Bacteriol 1990; 172:6396–6402
    [Google Scholar]
  141. Tsuda M., lino T. Ordering of the flagellar genes in Pseudomonas aeruginosa by insertions of mercury transposon Tn507. J Bacteriol 1983a; 153:1008–1017
    [Google Scholar]
  142. Tsuda M., lino T. Transductional analysis of the flagellar genes in Pseudomonas aeruginosa. J Bacteriol 1983b; 153:1018–1026
    [Google Scholar]
  143. Tsuda M., Oguchi T., lino T. Analysis of flagellar genes in Pseudomonas aeruginosa by use of Rfla plasmids and conjugations. J Bacteriol 1981; 147:1008–1014
    [Google Scholar]
  144. Tsuda M., Harayama S., lino T. Tn501 insertion mutagenesis in Pseudomonas aeruginosa PAO. Mol & Gen Genet 1984; 196:494–500
    [Google Scholar]
  145. Tümmler B., Römling U., Ratnaningsih E., Morgan A.F., Krishnapillai V., Holloway B.W. In Pseudomonas: Molecular Biology and Biotechnology 1992 Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology; pp 9–11
    [Google Scholar]
  146. Visca P., Serino L., Maras B., Orsi N. Biochemical characterization of pyoverdin-defective Pseudomonas aeruginosa mutants and mapping of chromosomal mutations. In Pseudomonas: Molecular Biology and Biotechnology 1992 Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology; pp 94–103
    [Google Scholar]
  147. Visca P., Ciervo A., Orsi N. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa. J Bacteriol 1994; 176:11428–11450
    [Google Scholar]
  148. Van Der Wauven G., Pierard A., Klay-Raymann M., Haas D. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four gene cluster encoding the arginine deiminase pathway. J Bacteriol 1984; 160:928–934
    [Google Scholar]
  149. Van Der Wauven G., Jann A., Haas D., Leisinger T., Stalon V. N2-succinyl ornithine in ornithine catabolism of Pseudomonas aeruginosa. Arch Microbiol 1988; 150:400–404
    [Google Scholar]
  150. Whitchurch C.B., Hobbs S.P., Livingston S.P., Krishnapillai V., Mattick J.S. Characterization of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialized protein export system widespread in eubacteria. Gene 1991; 101:33–44
    [Google Scholar]
  151. Wilson S.A., Wachira S.J., Drew R.A., Jones D., Pearl L.H. Antitermination of amidase expression in Pseudomonas aeruginosa is controlled by a novel cytoplasmic amide-binding protein. EMBO J 1993; 12:3637–3642
    [Google Scholar]
  152. Wohlfarth S., Winkler U. Chromosomal mapping and cloning of the lipase gene of Pseudomonas aeruginosa. J Gen Microbiol 1988; 134:433–440
    [Google Scholar]
  153. Wohlfarth S., Hoesche C., Strunk C., Winkler U.K. Molecular genetics of the extracellular lipase of Pseudomonas aeruginosa PAOl. J Gen Microbiol 1992; 138:1325–1335
    [Google Scholar]
  154. Wolff J.A., MacGregor C.H., Eisenberg R.C., Phibbs P.V. Jr I solation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO. J Bacteriol 1991; 173:4700–4706
    [Google Scholar]
  155. Woodruff W.A., Hassett D.J., Ohman D.E. Seq uence analysis of Pseudomonas aeruginosa DNA containing the alginate algT gene revealed the adjacent gene nadB encoding aspartate oxidase. In Abstracts of the 92nd General Meeting of the American Society for Microbiology 1992 edited by Washington, DC: American Society for Microbiology; abstract D-45, p 103
    [Google Scholar]
  156. Wozniak D.J., Ohman D.E. Pseudomonas aeruginosa AlgB, a two-component response regulation of the NtrC family, is required for algD transcription. J Bacteriol 1991; 173:1406–1413
    [Google Scholar]
  157. Wretlind B., Pavlovskis O.R. Genetic mapping and characterization of Pseudomonas aeruginosa mutants defective in the formation of extracellular proteins. J Bacteriol 1984; 158:801–808
    [Google Scholar]
  158. Yoshida H., Nakamura M., Bogaki M., Nakamura S. Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1990; 34:1273–1275
    [Google Scholar]
  159. Zennaro E., Ciabatti I., Cutruzzola F., D'Alessandro R., Sylvestrini M.C. The nitrite reductase gene of Pseudomonas aeruginosa: effect of growth conditions on the expression and construction of a mutant by gene disruption. FEMS Microbiol Eett 1993; 109:243–250
    [Google Scholar]
  160. Zhang C., Holloway B.W. Physical and genetic mapping of the cat A region of Pseudomonas aeruginosa. J Gen Microbiol 1992; 138:1097–1107
    [Google Scholar]
  161. Zhang C., Huang M., Holloway B.W. Mapping of the ben, ant and cat genes of Pseudomonas aeruginosa and evolutionary relationship of the ben region of P. aeruginosa and P. putida. FEMS Microbiol Eett 1993a; 108:303–310
    [Google Scholar]
  162. Zhang C., Huang M., Holloway B.W. Mapping of the ben genes of Pseudomonas aeruginosa. FEMS Microbiol Eett 1993b; 112:205–210
    [Google Scholar]
  163. Zielinski N.A., Chakrabarty A.M., Berry A. Characterization and regulation of the Pseudomonas aeruginosa gene algC encoding phosphomannomutase. J Biol Chem 1991; 266:9754–9763
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-11-2907
Loading
/content/journal/micro/10.1099/13500872-140-11-2907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error