1887

Abstract

Two isolates of a novel, moderately thermophilic species have been studied. The isolates, KU and BC13, are Gram-negative, motile bacteria having a pH optimum for growth of 2-2.5 and an optimum growth temperature of 45 °C. Both isolates are capable of chemolithotrophic growth on reduced sulfur substrates. They can also use molecular hydrogen as an electron donor. These two isolates can grow mixotrophically with sulfur or tetrathionate and yeast extract or glucose. The G + C content is 63.1-63.9 mol% and the isolates exhibit no significant DNA homology to any other species. Strains KU and BC13 both contain ubiquinone Q.8. 16S rRNA analysis indicates that these strains belong to a group of bacteria which includes other chemolithotrophic sulfur oxidizers such as and species, named sp. nov., to be described. The type strain, referred to as strain KU in this paper, has been deposited in the Deutsche Sammlung von Mikroorganismen, Braunschweig, FRG, with the accession number DSM 8584.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-12-3451
1994-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/12/mic-140-12-3451.html?itemId=/content/journal/micro/10.1099/13500872-140-12-3451&mimeType=html&fmt=ahah

References

  1. Amaro A.M., Hallberg K.B., Lindstrom E.B., Jerez C.A. An immunological assay for detection and enumeration of thermophilic biomining microorganisms. Appl Environ Microbiol 1994; 60:3470–3473
    [Google Scholar]
  2. Di Spirito A.A., Loh H.T., Tuovinen O.H. A novel method for the isolation of bacterial quinones and its application to appraise the ubiquinone composition of Thiobacillus ferrooxidans. Arch Microbiol 1983; 135:77–80
    [Google Scholar]
  3. Drobner E., Huber H., Stetter K.O. Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl Environ Microbiol 1990; 56:2922–2923
    [Google Scholar]
  4. Drobner E., Huber H., Rachel R., Stetter K.O. Thiobacillus plumbophilus spec, nov, a novel galena and hydrogen oxidizer. Arch Microbiol 1992; 157:213–217
    [Google Scholar]
  5. Fliermans C.B., Brock T.D. Ecology of sulfur-oxidizing bacteria in hot acid soils. J Bacteriol 1972; 111:343–350
    [Google Scholar]
  6. Ghauri M.A., Johnson D.B. Physiological diversity amongst some moderately thermophilic iron-oxidising bacteria. FEMS Microbiol Ecol 1991; 85:327–334
    [Google Scholar]
  7. Goebel B.M., Stackebrandt E. Cultural and phylo-genetical analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 1994; 60:1614–1621
    [Google Scholar]
  8. Hitchcock P.J., Brown T.M. Morphological heterogeneity among Salmonella lipopolysaccharides in silver-stained polyacrylamide gels. J Bacteriol 1983; 154:269–277
    [Google Scholar]
  9. Ingledew W.J. Thiobacillus ferrooxidans: the bioenergetics of an acidophilic chemolithotroph. Biochim Biophys Acta 1982; 683:89–117
    [Google Scholar]
  10. Jukes T.H., Cantor C.R. Evolution of protein molecules. In Mammalian Protein Metabolism 1969 Edited by Munro H.N. New York: Academic Press; pp 21–132
    [Google Scholar]
  11. Karavaiko G.I., Bulygina E.S., Tsaplina I.A., Bogdanova T., 1.8t Chumakov K.M. Sulfobacillus thermosulfidooxidans: a new lineage of bacterial evolution. FEBS Lett 1990; 261:8–10
    [Google Scholar]
  12. Katayama-Fujimura Y., Tsuzaki N., Kuraishi H. Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. J Gen Microbiol 1982; 128:1599–1611
    [Google Scholar]
  13. König H. Isolation and characterization of Methanobacterium uliginosum sp nov from a marshy soil. Can J Microbiol 1984; 30:1477–1481
    [Google Scholar]
  14. Lane D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics 1991 Edited by Stackebrandt E., Goodfellow M. New York: Wiley; pp 115–175
    [Google Scholar]
  15. Lane D.J., Harrison A.P. Jr, Stahl D., Pace B., Giovanni S.J., Olsen G.J., Pace N.R. Evolutionary relationships among sulfur-and iron-oxidizing eubacteria. J Bacteriol 1992; 174:269–278
    [Google Scholar]
  16. Larsen N., Olsen G.J., Maidak B.L., McCaughey M.J., Overbeek R., Macke T.J., Marsh T.L., Woese C.R. The ribosomal database project. Nucleic Acids Res 21 1993; Supplement):3021–3023
    [Google Scholar]
  17. Lawrence R.W. Biotreatment of gold ores. In Microbial Mineral Recovery 1990 Edited by Ehrlich H.L., Brierley C.L. New York: McGraw-Hill; pp 127–148
    [Google Scholar]
  18. Lindström E.B., Sehlin H.M. High efficiency plating of the thermophilic sulfur-dependent archaebacterium Sulfolobus acidocaldarius. Appl Environ Microbiol 1989; 55:3020–3021
    [Google Scholar]
  19. Lindström E.B., Gunneriusson E., Tuovinen O.H. Bacterial oxidation of refractory sulfide ores for gold recovery. Crit Rev Biotechnol 1992; 12:133–155
    [Google Scholar]
  20. Lindström E.B., Wold S., Ketteneh-Wold N., Sääf S. Optimization of pyrite bioleaching using Sulfolobus acidocaldarius. Appl Microbiol Biotechnol 1993; 38:702–707
    [Google Scholar]
  21. Marmur J., Doty P. Determination of base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5:109–118
    [Google Scholar]
  22. Marsh R.M., 8, Norris P.R. The isolation of some thermophilic, autotrophic, iron-and sulfur-oxidizing bacteria. FEMS Microbiol Lett 1983; 17:311–315
    [Google Scholar]
  23. Norris P.R. Acidophilic bacteria and their activity in mineral sulfide oxidation. In Microbial Mineral Recovery 1990 Edited by Ehrlich H.L., Brierley C.L. New York: McGraw Hill; pp 3–27
    [Google Scholar]
  24. Norris P.R., Barr D.W. Bacterial oxidation of pyrite in high temperature reactors. In Biohydrometallurgy 1988 Edited by Norris P.R., Kelly D.P. Kew, Surrey, UK: Science & Technology Letters; pp 532–536
    [Google Scholar]
  25. Norris P.R., Marsh R.M., Lindstrom E.B. Growth of mesophilic and thermophilic acidophilic bacteria on sulfur and tetrathionate. Biotechnol Appl Biochem 1986; 8:318–329
    [Google Scholar]
  26. Pronk J.T., Meijer W.M., Hazeu W., Van Dijken J.P., Bos P., Kuenen J.G. Growth of Thiobacillus ferrooxidans on formic acid. Appl Environ Microbiol 1991; 57:2057–2062
    [Google Scholar]
  27. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  29. Wilson K. Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology 1987 Edited by Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.A., Struhl K. New York: Green & Wiley Interscience; pp 241–254
    [Google Scholar]
  30. Woese C.R. Bacterial evolution. Microbiol Rev 1987; 51:221–271
    [Google Scholar]
  31. Wood A.P., Kelly D.P. Physiological characteristics of a new thermophilic obligately chemolithotrophic Thiobacillus species, Thiobacillus tepidarius. Int J Syst Bacteriol 1985; 35:434–437
    [Google Scholar]
  32. Wood A.P., Kelly D.P. Isolation and physiological characterisation of Thiobacillus aquaesulis, sp. nov., a novel facultatively autotrophic moderate thermophile. Arch Microbiol 1988; 149:339–343
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-12-3451
Loading
/content/journal/micro/10.1099/13500872-140-12-3451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error